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Preface

These notes deal with the theory of Sobolev spaces on Riemannian manifolds.
Though Riemannian manifolds are natural extensions of Euclidean space, the naive
idea that what is valid for Euclidean space must be valid for manifolds is false. Sev-
eral surprising phenomena appear when studying Sobolev spaces on manifolds.
Questions that are elementary for Euclidean space become challenging and give
rise to sophisticated mathematics, where the geometry of the manifold plays a cen-
tral role. The reader will find many examples of this in the text.

These notes have their origin in a series of lectures given at the Courant Insti-
tute of Mathematical Sciences in 1998. For the sake of clarity, I decided to deal
only with manifolds without boundary. An appendix concerning manifolds with
boundary can be found at the end of these notes. To illustrate some of the results or
concepts developed here, I have included some discussions of a special family of
PDEs where these results and concepts are used. These PDEs are generalizations
of the scalar curvature equation. As is well known, geometric problems often lead
to limiting cases of known problems in analysis.

The study of Sobolev spaces on Riemannian manifolds is a field currently un-
dergoing great development. Nevertheless, several important questions still puzzle
mathematicians today. While the theory of Sobolev spaces for noncompact man-
ifolds has its origin in the 1970s with the work of Aubin, Cantor, Hoffman, and
Spruck, many of the results presented in these lecture notes have been obtained in
the 1980s and 1990s. This is also the case for the applications already mentioned
to scalar curvature and generalized scalar curvature equations. A substantial part
of these notes is devoted to the concept of best constants. This concept appeared
very early on to be crucial for solving limiting cases of some partial differential
equations. A striking example of this was the major role that best constants played
in the Yamabe problem.

These lecture notes are intended to be as self-contained as possible. In partic-
ular, it is not assumed that the reader is familiar with differentiable manifolds and
Riemannian geometry. The present notes should be accessible to a large audience,
including graduate students and specialists of other fields.

The present notes are organized into nine chapters. Chapter 1 is a quick in-
troduction to differential and Riemannian geometry. Chapter 2 deals with the
general theory of Sobolev spaces for compact manifolds, while Chapter 3 deals
with the general theory of Sobolev spaces for complete, noncompact manifolds.
Best constants problems for compact manifolds are discussed in Chapters 4 and
5, while Chapter 6 deals with some special type of Sobolev inequalities under

xi



xii PREFACE

constraints. Best constants problems for complete noncompact manifolds are dis-
cussed in Chapter 7. Chapter 8 deals with Euclidean-type Sobolev inequalities.
The influence of symmetries on Sobolev embeddings is discussed in Chapter 9.
An appendix at the end of these notes briefly discusses the case of manifolds with
boundaries.

It is my pleasure to thank my friend Jalal Shatah for encouraging me to write
these notes. It is also my pleasure to express my deep thanks to my friends and col-
leagues Tobias Colding, Zindine Djadli, Olivier Druet, Antoinette Jourdain, Michel
Ledoux, Frédéric Robert, and Michel Vaugon for stimulating discussions and valu-
able comments about the manuscript. Finally, I wish to thank Reeva Goldsmith,
Paul Monsour, and Joe Shearer for the wonderful job they did in the preparation of
the manuscript.

Emmanuel Hebey
Paris, September 1998
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CHAPTER 1

Elements of Riemannian Geometry

The purpose of this chapter is to recall some basic facts concerning Riemannian
geometry. Needless to say, for dimension reasons, we are obliged to be succinct and
partial. For those who have only a slight acquaintance with Riemannian geometry,
we recommend the following books: Chavel [45], Do-Carmo [70], Gallot-Hulin-
Lafontaine [88], Hebey {109], Jost [127], Kobayashi-Nomizu {136], Sakai {171],
and Spivak [181]. Of course, many other excellent books on the subject do exist.
We mention that Einstein’s summation convention is adopted: an index occurring
twice in a product is to be summed. This also holds for the rest of the book.

1.1. Smooth Manifolds

Paraphrasing a sentence of Elie Cartan, a manifold is really made of small
pieces of Euclidean space. More precisely, let M be a Hausdorff topological space.
We say that M is a topological manifold of dimension # if each point of M pos-
sesses an open neighborhood that is homeomorphic to some open subset of the
Euclidean space R". A chart of M is then a couple (£2, ¢) where £2 is an open
subset of M, and ¢ is a homeomorphism of €2 onto some open subset of R”. For
y € 2, the coordinates of ¢(y) in R” are said to be the coordinates of y in (£2, ¢).
An atlas of M is a collection of charts (2;, ¢;), i € I, such that M = UI.E, Q;.
Given (£2;, ¢;)ie; an atlas, the transition functions are

giop ! 1@ (N > ¢ (N

with the obvious convention that we consider ¢; o ¢; ' if and only if ; N Q; # 0.
The atlas is then said to be of class C¥ if the transition functions are of class C¥,
and it is said to be C*-complete if it is not contained in a (strictly) larger atlas of
class C*. As one can easily check, every atlas of class C¥ is contained in a unique
C*-complete atlas.

For our purpose, we will always assume in what follows that k = +o00 and
that M is connected. One then gets the following definition of a smooth manifold:
A smooth manifold M of dimension n is a connected topological manifold M of
dimension n together with a C*°-complete atlas.

Classical examples of smooth manifolds are the Euclidean space R” itself, the
torus T, the unit sphere S" of R"*!, and the real projective space P"(R).

Given M and N two smooth manifolds, and f : M — N some map from M
to N, we say that f is differentiable (or of class C*) if for any charts (£2, ¢) and
(€2, @) of M and N such that f(2) C £, the map

gofop:ip(Q)— ¢(Q)
1



2 1. ELEMENTS OF RIEMANNIAN GEOMETRY

is differentiable (or of class C*). In particular, this allows us to define the notion
of diffeomorphism and the notion of diffeomorphic manifolds. Independently, one
can define the rank R(f), of f at some point x of M as the rank of ¢ o f o ¢!
at ¢(x), where (£2, ¢) and (, ¢) are as above, with the additional property that
x € . This is an intrinsic definition in the sense that it does not depend on the
choice of the charts. The map f is then said to be an immersion if, for any x € M,
R(f), = m, where m is the dimension of M, and a submersion if for any x € M,
R(f), = n, where n is the dimension of N. It is said to be an embedding if it is an
immersion that realizes a homeomorphism onto its image.

We refer to the above definition of a manifold as the abstract definition of
a smooth manifold. Looking carefully to what it says, and to the questions it
raises, things appear to be less clear than they may seem at first glance. Given M
a connected topological manifold, one can ask if there always exists a structure of
smooth manifold on M, and if this structure is unique. Here, uniqueness has to be
understood in the following sense: given M a connected topological manifold, and
A a C*°-complete atlas of M, the smooth structure of M is said to be unique if, for
any other C*°-complete atlas A of M, the smooth manifolds (M, A) and (M, A)
are diffeomorphic. With this definition of uniqueness, the only reasonable defini-
tion for that notion, one gets surprising answers to the questions we asked above.
From the works of Moise, developed in the 1950s, one has that up to dimension 3,
any topological manifold possesses one, and only one, smooth structure. But start-
ing from dimension 4, one gets that there exist topological manifolds which do not
possess smooth structures (this was shown by Freedman in the 1980s), and that
there exist topological manifolds which possess many smooth structures. Coming
back to the works of Milnor in the 1950s, and to the works of Kervaire and Milnor,
one has that S7 possesses 28 smooth structures, while S!' possesses 992 smooth
structures! Perhaps more surprising are the consequences of the works of Donald-
son and Taubes: While R” possesses a unique smooth structure for n # 4, there
exist infinitely many smooth structures on R*!

Up to now, we have adopted the abstract definition of a manifold. As a surface
gives the idea of a two-dimensional manifold, a more concrete approach would
have been to define manifolds as submanifolds of Euclidean space. Given M and
N two manifolds, one will say that N is a submanifold of M if there exists a smooth
embedding f : N — M. According to a well-known result of Whitney, the two
approaches (concrete and abstract) are equivalent, at least when dealing with para-
compact manifolds, since for any paracompact manifold M of dimension n, there
exists a smooth embedding f : M — R?"*!. In other words, any paracompact (ab-
stract) manifold of dimension » can be seen as a submanifold of some Euclidean
space.

Let us now say some words about the tangent space of a manifold. Given M a
smooth manifold and x € M, let F, be the vector space of functions f : M — R
which are differentiable at x. For f € ¥,, we say that f is flat at x if for some
chart (2, ¢) of M at x, D(f o <p“)¢(x) = 0. Let N, be the vector space of such
functions. A linear form X on ¥, is then said to be a tangent vector of M at x if
N, C KerX. We let T, (M) be the vector space of such tangent vectors. Given
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(82, ) some chart at x, of associated coordinates x', we define (%)‘ € T.(M) by:

for any f € ¥,
d -1
(a_x,.)r (N =Di(f o9 )0
As a simple remark, one gets that the (aixi)x’s form a basis of T.(M). Now, one
defines the tangent bundle of M as the disjoint union of the T, (M)’s, x € M. If
M is n-dimensional, one can show that T (M) possesses a natural structure of a

2n-dimensional smooth manifold. Given (€2, ¢) a chart of M,

(U T.(M), d))

xe
is a chart of T (M), where for X € T.(M), x € €2,

DX)=(p'(x), ..., 0" (0), X(9'), ..., X ("))

(the coordinates of x in (£2, ¢) and the components of X in (£2, ¢), that is, the co-
ordinates of X in the basis of T, (M) associated to (£2, ¢) by the process described
above). By definition, a vector field on M is amap X : M — T (M) such that for
any x € M, X(x) € T,(M). Since M and T (M) are smooth manifolds, the notion
of a vector field of class C* makes sense.

Given M, N two smooth manifolds, x a point of M, and f : M — N dif-
ferentiable at x, the tangent linear map of f at x (or the differential map of f at
x), denoted by f,(x), is the linear map from T (M) to Ty, ,(N) defined by: For
X € T.(M) and g : N — R differentiable at f(x),

(fe) - (X)) - (®) =X(go f)
By extension, if f is differentiable on M, one gets the tangent linear map of f,
denoted by f,. That is the map f, : T(M) — T (N) defined by: For X € T,.(M),
fu(X) = f.(x).(X). As one can easily check, f, is C¥~if fis CX. For f : M| —
M, g: My — Mz, and x € M), (g o f).(x) = g.(f(x)) o fu(x).

Similar to the construction of the tangent bundle, one can define the cotangent
bundle of a smooth manifold M. For x € M, let T,(M)* be the dual space of
T.(M). If (2, @) is a chart of M at x of associated coordinates x', one gets a basis
of T.(M)* by considering the dx'’s defined by dx' - (%)A = 8/. As for the tangent
bundle, the cotangent bundle of M, denoted by 7*(M), is the disjoint union of the
T.(M)*’s, x € M. Here again, if M is n-dimensional, T*(M) possesses a natural
structure of 2n-dimensional smooth manifold. Given (€2, ¢) a chart of M,

(U T.(M)", d>)

xeR

is a chart of T (M), where forn € T,(M)*, x € &,

ad d
q’(’l)z <¢1(x)’.”’¢n(x)’ 77(5;]‘) s""r’(ax ) )

(the coordinates of x in (£2, ¢) and the components of 7 in (€2, ¢), that is, the co-
ordinates of 7 in the basis of T\, (M)* associated to (€2, ¢) by the process described
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above). By definition, a 1-form on M is amap n : M — T*(M) such that for any
x € M, n(x) € T,(M)*. Here again, since M and 7*(M) are smooth manifolds,
the notion of a 1-form of class C* makes sense. For f a function of class C* on M,
let df be defined by: Forx € M and X € T, (M), df(x) - X = X(f). Thendf is
a 1-form of class C¥~!.

Given M a smooth n-manifold, and 1 < ¢ < n an integer, let /\" T.(M)*
be the space of skew-symmetric g-linear forms on 7,(M). If (2, ¢) is a chart
of M at x, of associated coordinates x, {dx2 A - A dx;"}g,<...<,-q is a basis of
A? T,(M)*. With similar constructions to the ones made above, one gets that
/\”(M), the disjoint union of the /\q T,(M)*’s, possesses a natural structure of a
smooth manifold. Its dimension is n + C), where C;! = n!/(q!(n — ¢q)!). Some
map n : M — A%(M) is then said to be an exterior form of degree ¢, or just an
exterior g-form, if for any x € M, n(x) € A\? T.(M)*. Here again, the notion of
an exterior g-form of class C* makes sense. Given (2, ¢) some chart of M, and 5
a g-form of class C* whose expression in (2, p) is

n= Z M., dx" Ao A dxl
iy <<y
the exterior derivative of 5, denoted by dp, is the exterior (¢ + 1)-form of class
C*~! whose expression in (2, ¢) is

dn = }: dni,...i, N\ dx' Ao A dx'
i) <-<iy
One then gets that for any exterior g-form n, d(dn) = 0. Conversely, by the
Poincaré lemma, if 7 is an exterior g-form such that dn = 0, that is, a closed
exterior g-form, around any point in M, there exists an exterior (g — 1)-form 7
such that d7j = n. One says that a closed exterior form is locally exact.

As another generalization, given M a smooth r-manifold, x some point of M,
and p, g two integers, one can define qu( T,(M)) as the space of (p, q)-tensors on
T.(M), that is, the space of (p + g)-linear forms

n:T,(M)x - - x T (M) X?X(M)* X +ee X Tx(M)*J — R

——

P q

An element of T, (TJr M )) is said to be p-times covariant and g-times contravari-
ant. If (2, @) is a chart of M at x, of associated coordinates x', the family

. i d 0
{dx}‘@---@dx{’@(——) ®...®( )}
ale x aqu X

is a basis of T, (T, (M)). Here again, one gets that the disjoint union T,/ (M) of the
T, (Tx M ))’s possesses a natural structure of a smooth manifold. Its dimension is
n(1+nP*="Y . Amap T : M — T, (M) is then said to be a (p, g)-tensor field on
M if forany x € M, T(x) € T, (T, (M)). It is said to be of class C* if it is of class
C* from the manifold M to the manifold T,,q (M). Given (€2, @) and (L2, ¥) two
charts of M of associated coordinates x' and y’, and T a (p, g)-tensor field, let us

i[‘....l'p,j],--..jq
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denote by T, J1--Jg and T’ TS components in (£2, ¢) and (€2, ¥). Then, for any

fy.. l

ir,... l,,,]},...,]q,andanyxeﬂ

9x! axr gy v/
A T = T )( - ) (5 ) (L) ( ) )
ayll X ayi,n X 8x.5l X axﬂq X

As a remark, given M and N two manifolds, f : M — N a map of class C**!,
and T a (p, 0)-tensor field of class CX on N, one can define the pullback f*T of T
by f, that is, the (p, 0)-tensor field of class C* on M defined by: For x € M and

Xi,..., X, € T(M),
(DY) - (Xy, . Xp) =T(f®) - (o) - Xy, .o, fi(0) - X))

As one can easily check, for f : M|, — My and g : M, — M3, (go f)* = f*og*.
Let us now define the notion of a linear connection. Denote by I" (M) the space
of differentiable vector fields on M. A linear connection D on M is a map

D:T(M)xI'(M) - T(M)

such that
. Vxe M,VX € T,(M),VY € (M), D(X,Y) € T.(M),
2.VxeM,D : T, (M) x '(M) - T.(M) is bilinear,
3.Vx € M, V¥X € T,(M), Vf : M — R differentiable, VY € TI'(M),
DX, fY)=X(f)Y(x)+ f(x)D(X,Y), and
4. VX,Y € I'(M), and Vk integer, if X is of class C* and Y is of class
C**!, then D(X, Y) is of class C¥, where D(X, Y) is the vector field x —>
D(X(x),Y).
Given D a linear connection, the usual notation for D(X, Y) is Dx(Y). One says
that Dy (Y) is the covariant derivative of ¥ with respect to X. Let (2, ¢) be a chart
of M of associated coordinates x'. Set

Vi = D(%)

As one can easily check, there exist n? smooth functions l""‘ 2 — R such that
for any i, j, and any x € £,

o (i)o=ion(2)
i ox, (x) =Tj;(x) ox ),

Such functions, the Christoffel symbols of D in (R, ¢), characterize the connection
in the sense that for X € T, (M), x € Q,and Y € I'(M),

. . ay/ ; 0
Dx(Y) = X' (V;Y)(x) = X* ((——) + I‘;’a(x)Y"(x)) (——)
ox; /, dax; J

where the X’s and Y?’s denote the components of X and Y in the chart (2, ¢),
and for f : M — R differentiable at x,

d
(3—)]::))( =D (f ° ¢,~l)¢(x)

As one can easily check, since (1.1) is not satisfied by the I"‘ s, the Fk ’s are not the
components of a (2, 1)-tensor field. An important remark is that ]mear connections
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have natural extensions to differentiable tensor fields. Given T a differentiable
(p, q)-tensor field, x a point of M, X € T,(M), and (2, ¢) a chart of M at x,
Dx(T) is the (p, g)-tensor on T, (M) defined by Dx(T) = X{(V;T)(x), where

Ji--Jgq

d
JiJ i...d o Jr-J
(ViT)(x);” N =( 2 ) E L5 COT ()3 7 i i

+ Zr“ COT Gy,

The covariant derivative commutes with the contraction in the sense that
Dx(CET) = C2Dx(T)
where C,’: T stands for the contraction of T of order (k;, k,). More, for X € T, (M),
and T and T two differentiable tensor fields, one has that
Dx(T ® T) = (Dx(I)) ® T(x) + T(x) ® (Dx(T))

Given T a (p, g)-tensor field of class C**!, we let VT be the (p + 1, g)-tensor
field of class C* whose components in a chart are given by

Jred JreeJ
(VT),',...,':+, = (Vi T)iz..‘i,:.
By extension, one can then define V2T, V3T, and so on. For f : M — R a smooth
function, one has that V f = df and, in any chart (2, ¢) of M,

*f of
(sz)(x),-,-=(axiaxj) I (x )( )

82
( A ) :D?j(fo‘p_l),pm

Bx,-axj

where

In the Riemannian context, V2 f is called the Hessian of f and is sometimes de-
noted by Hess(f).

Finally, let us define the torsion and the curvature of a linear connection D.
The torsion T of D can be seen as the smooth (2, 1)-tensor field on M whose
components in any chart are given by the relation T;; = T'f; — '};. One says that
the connection is torsion-free if T = 0. The curvature R of D can be seen as the
smooth (3, 1)-tensor field on M whose components in any chart are given by the

relation
i

ary, ATy

1 ki JI I pa a

o=k _ 4T T e

ijk an axk jat ki ka
As one can easily check, R, «=—Rl,. ;- Moreover, when the connection is torsion-
free, one has that

! { !
Rt/k + Rkt] + R; jki — =0

(Vi R)mjk + (VkR)mU + (V R)mkl =0
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Such relations are referred to as the first Bianchi’s identity, and the second Bianchi’s
identity.

1.2. Riemannian Manifolds

Let M be a smooth manifold. A Riemannian metric g on M is a smooth (2, 0)-
tensor field on M such that for any x € M, g(x) is a scalar product on T,(M).
A smooth Riemannian manifold is a pair (M, g) where M is a smooth manifold
and g a Riemannian metric on M. According to Whitney, for any paracompact
smooth n-manifold there exists a smooth embedding f : M — R?'*!. One then
gets that any smooth paracompact manifold possesses a Riemannian metric. Just
think to g = f*e, e the Euclidean metric. Two Riemannian manifolds (M, g;) and
(M, g-) are said to be isometric if there exists a diffeomorphism f : M| — M,
such that f*g, = g;.

Given (M, g) a smooth Riemannian manifold, and y : [a, b] — M a curve of
class C', the length of y is

b
L) = /\/g(y(r» dr) (dt))d;

Where( ), € T,(M) is such lhal( - f = (foy) (1) forany f: M - R
dlfferentlable at y(r). If y is piecewise C !, the length of ¥ may be defined as the
sum of the lengths of its C' pieces. For x and y in M, let C,, be the space of
piecewise C! curves y : [a, b] — M such that y(a) = x and y(b) = y. Then

= inf L
do(x,) yleré_“. )

defines a distance on M whose topology coincides with the original one of M. In
particular, by Stone’s theorem, a smooth Riemannian manifold is paracompact. By
definition, d, is the distance associated to g.

Let (M, g) be a smooth Riemannian manifold. There exists a unique torsion-
free connection on M having the property that Vg = 0. Such a connection is the
Levi-Civita connection of g. In any chart (2, ¢) of M, of associated coordinates
x', and for any x € , its Christoffel symbols are given by the relations

1 agm' agml' ag'
Fk = — —j - _]‘ mk
v ) 2 (( 0x; )X * ( ax; ),\ (axm)x) 8

where the g% ’s are such that g;,, g = 6ij . Let R be the curvature of the Levi-Civita
connection as introduced above. One defines:
1. the Riemann curvature Rmy ¢, of g as the smooth (4, 0)-tensor field on M
whose components in a chart are R;jy; = gi« Rj‘.’k,,
2. the Ricci curvature Rcy ) of g as the smooth (2, 0)-tensor field on M

whose components in a chart are R;; = Ryig; g""8 ,and
3. the scalar curvature Scaly o) of g as the smooth real-valued function on M

whose expression in a chart is Scal(y o) = R;;g".
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As one can check, in any chart,
Riji = —Rjin = —Riji = Ruij
and the two Bianchi identities are
Rijxi + Rijk + Riyj =0,
(Vi Rm(M.g)) + (Vin Rm(M.g))jk” +(V, Rm(M.g))jkm,- =

In particular, the Ricci curvature Rcy o) of g is symmetric, so that in any chart
R;j = Rj;. Forx € M, let Gi (M) be the 2-Grassmannian of 7, (M). The sectional
curvature Ky g of g is the real-valued function defined on | J,_,, G2(M) by: For

P € GX(M),

Jkim

- Rmy o (0)(X, Y, X, Y)
g (X, X)g(x)(¥, ¥) — gx)(X, ¥)°

where (X, Y) is a basis of P. As one can easily check, such a definition does
not depend on the choice of the basis. Moreover, one can prove that the sectional
curvature determines the Riemann curvature.

Given (M, g) a smooth Riemannian manifold, and D its Levi-Civita connec-
tion, a smooth curve y : [a, b] — M is said to be a geodesic if for all 7,

dy _
D(e%)(:ﬁ) =0

This means again that in any chart, and for all &,
(M) O +T5rO) ) O(7) @ =0

For any x € M, and any X € T, (M), there exists a unique geodesic y : [0, €] —
M such that y(0) = x and (%)0 = X. Let y, x be this geodesic. For A > 0
real, y,,x(t) = y..x(At). Hence, for || X|| sufficiently small, where |- | stands
for the norm in T, (M) associated to g(x), one has that y, x is defined on [0, 1].
The exponential map at x is the map from a neighborhood of 0 in 7, (M), with
values in M, defined by exp . (X) = y, x(1). If M is n-dimensional and up to the
assimilation of T, (M) to R" via the choice of an orthonormal basis, one gets a chart
(K2, exp;') of M at x. This chart is normal at x in the sense that the components
gij of g in this chart are such that g;;(x) = §;;, with the additional property that
the Christoffel symbols I‘{‘j of the Levi-Civita connection in this chart are such that
I‘f‘j (x) = 0. The coordinates associated to this chart are referred to as geodesic
normal coordinates.

Let (M, g) be a smooth Riemannian manifold. The Hopf-Rinow theorem states
that the following assertions are equivalent:

K(M.g)(P)

1. the metric space (M, d,) is complete,

2. any closed-bounded subset of M is compact,

3. there exists x € M for which exp, is defined on the whole of 7, (M), and
4. for any x € M, exp, is defined on the whole of T, (M).



1.2. RIEMANNIAN MANIFOLDS 9

Moreover, one gets that any of the above assertions implies that any two points in
M can be joined by a minimizing geodesic. Here, a curve y from x to y is said to

be minimizing if L(y) = d,(x, y).

Given (M, g) a smooth Riemannian n-manifold, one can define a natural posi-
tive Radon measure on M. In particular, the theory of the Lebesgue integral can be
applied. For (SZ,, (p,) some atlas of M, we shall say that a family (Q NN )je J
is a partition of unity subordmate to (2, ¢i),, if the following holds:

1. (a;); is a smooth partition of unity subordinate to the covering (£2;);,

2. (2, <pj)j is an atlas of M, and

3. forany j, suppa; C £2;.

As one can easily check, for any atlas (Q,-, (p,-)l.E , of M, there exists a partition of
unity (2}, ¢;, ozj)je , subordinate to (£2;, ¢i), ;- One can then define the Riemann-
ian measure as follows: Given f : M — R continuous with compact support, and
given (Q,, (p,) an atlas of M,

/fdv(g) EJ/% )(aj\/l?lf)o%—ldx

where (;, ¢}, ozj)j ., is a partition of unity subordinate to (2, ¢;),_,. |g| stands
for the determinant of the matrix whose elements are the components of g in
(Q s (p,) and dx stands for the Lebesgue volume element of R”. One can prove
that such a construction does not depend on the choice of the atlas (Q,, (p,)le , and
the partition of unity (2}, ¢;, ozj)jej.

The Laplacian acting on functions of a smooth Riemannian manifold (M, g)
is the operator A, whose expression in a local chart of associated coordinates x' is

A g du - ou
u=— —-TIf—
S T X T

For u and v of class C? on M, on then has the following integration by parts formula

/(Agu)vdv(g)z/ (Vu,Vv)dv(g):/ u(Agv)dvu(g)
M M M

where (-, -) is the scalar product associated with g for 1-forms.

Coming back to geodesics, one can define the injectivity radius of (M, g) at
some point x, denoted by inj,, ,,(x), as the largest positive real number r for which
any geodesic starting from x and of length less than r is minimizing. One can then
define the (global) injectivity radius by

inj iy ) = XIS/E iy ) (x)
One has that inj, ,, > 0 for a compact manifold, but it may be zero for a complete
noncompact manifold. More generally, one can define the cut locus Cut(x) of
x as a subset of M and prove that Cut(x) has measure zero, that inj,, (X)) =

d, (x, Cut(x)), and that exp, is a diffeomorphism from some star-shaped domain
of T,(M) at 0 onto M\ Cut(x). In particular, one gets that the distance function r
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to a given point is differentiable almost everywhere, with the additional property
that |Vr| = 1 almost everywhere.

1.3. Curvature and Topology

As is well-known, curvature assumptions may give topological and diffeomor-
phic information on the manifold. A striking example of the relationship that ex-
ists between curvature and topology is given by the Gauss-Bonnet theorem, whose
present form is actually due to the works of Allendoerfer (2], Allendoerfer-Weil
[3], Chern [49], and Fenchel [81]. One has here that the Euler-Poincaré character-
istic x (M) of a compact manifold can be expressed as the integral of a universal
polynomial in the curvature. For instance, when the dimension of M is 2,

1
xX(M) = 4~/ Scal(y.4) dv(g)
T JMm

and when the dimension of M is 4, as shown by Avez [15],

1 1 1
XM) =75 /M <§|Wey1(M,g) >+ I Scaly, ., —-le.g)lz)dv(g)

where | - | stands for the norm associated to g for tensors, and where Weyl,, ,, and
E(u.q) are, respectively, the Weyl tensor of g and the traceless Ricci tensor of g. In
a local chart, the components of Weyl,, ., are

1
Wiik = Riji — n__—z(Rikgjl + Rjigik — Rugjx — Rjxgil)
4 SC&](M_g)
(n—1n—-2)
where n stands for the dimension of the manifold. As another striking example of
the relationship that exists between curvature and topology, one can refer to Myer’s

theorem (see, for instance, [88]). This theorem states that a smooth, complete
Riemannian n-manifold (M, g) whose Ricci curvature satisfies

(gikgjl - gilgjk)

Rew ) > (n — Dk’g

as bilinear forms, and for some k& > O real, must be compact, with the additional
property that its diameter diamyy ,) is less than or equal to 7. Moreover, by Hamil-
ton’s work [99], any 3-dimensional, compact, simply connected Riemannian man-
ifold of positive Ricci curvature must be diffeomorphic to the unit sphere S* of
R*. Conversely, by recent results of Lohkamp [153], negative sign assumptions
on the Ricci curvature have no effect on the topology, since any compact man-
ifold possesses a Riemannian metric of negative Ricci curvature. This does not
hold anymore when dealing with sectional curvature. By the Cartan-Hadamard
theorem (see, for instance, [88]), one has that any complete, simply connected,
n-dimensional Riemannian manifold of nonpositive sectional curvature is diffeo-
morphic to R”.

As other examples of the relationship that exists between curvature and topol-
ogy, let us mention the well-known sphere theorem of Berger [26], Klingenberg



