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Preface

The second edition of this book contains significant changes and ad-
ditions intended to bring its content closer to the current curriculum of
required courses in functional analysis offered in many universities of the
USSR.

A certain part of the material has been rearranged. Appendix I (the
theory of measure, measurable functions, and the integral) and Appendix II
(distributions and the Fourier transform) have been enla.rged and placed in
separate chapters.

Chapter 2 on vector spaces has been revised. It now contains a detailed
exposition of contemporary material on convex sets in vector spaces and
topological vector spaces. .

Chapter 4, devoted to the spectral theory of operators, has been en-
larged. A section has been added on unbounded operators and the spectral
theory of self-adjoint unbounded operators; material on completely contin-
uous operators has also been included. Proofs have been carried out for
certain propositions that were contained in the first edition as exercises and
more detailed proofs have been given for many propositions.

Chapter 5, The Trace of an Operator, has been enlarged and some new
results of the author relating to the traces of discrete operators have been
included. These new investigations can be used for finding the regularized
traces of partial differential operators. This material can be covered as a
separate course. A significant number of examples illustrating the contents
have been added, and new exercises have been included to promote better
mastery of the material.

The author expresses deep gratitude to his students A. S. Pechentsov,

v
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V. A. Lyubishkin, and S. V. Kurochkin, who read the manuscript and made
many comments.

V. Sadovnichii
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Chapter 1
Metric and Topological Spaces

1. ELEMENTARY CONCEPTS OF SET THEORY

1.1. Elementary Properties of Sets. Mappings.
Cartesian Product of Sets

A set is a collection of objects having a given property.

Every set is defined by some property P and consists of those objects
and only those objects that have the property.

In what follows we shall agree to consider only sets belonging to some
“universal” set E and to denote the sets under consideration by capital let-
ters A, B,C,...or X,Y,Z.... Theset A consisting of elements z,y, z,. ..
is often denoted as follows: A = {z,y, z, ... }.

If the elements a and b coincide, we write @ = b. If the elements a and
b are distinct, we write a # b. The condition that an element a belongs to
the set A is written as follows: a € A and the notation a ¢ A means that
the element a does not belong to the set A (does not have property P).

-If it is necessary to emphasize that the set A4 is comprised of elements
belonging to the universal set E and having property P, we often apply the
notation

A={a€E : P}.

This notation is read as follows: “The set A consists of the elements of &£
having property P.” -

1.1.1. Set Inclusion
Let A and B be two sets in E. The set B is said to be contained in

\



2 Chapter 1

the set A (or included* in the set A) if each element of the set B is also an
element of the set A. The inclusion of the set B in the set A is denoted by
the symbol “C” and written as follows: B C A. The set B is not contained
in A (B ¢ A) if there exists at least one element b € B such that b ¢ A.

Two sets A and B are said to be coincident (or equal) if they consist of
the same elements; in this case we write A = B.

The inclusion relation of two sets has the following properties:

1°) Ac 4

2°) if AC B and B C A, then A= B;

3°)if BCAand ACC,then BCC.

1.1.2. The Concept of the Empty Set

Consider the set {a} of elements of E for which a # a. Such a set does
not contain any elements; it is called the empty set and is denoted &:

@={a€E:a#a}.

If a set A # O, then A contains at least one element. '

The sets A and @ are called the improper subsets of the set A. The re-
maining subsets of A are called proper subsets. The following two properties
are obvious:

4°) @ C A for any A in E;
5°) AC E for any Ain E.

1.1.8. Operations on Sets

Let A and B be two sets in E. The union (or sum) of the sets A and
B is defined to be the set C consisting of the elements belonging to at least
one of the sets A and B. The union C of the two sets A and B is denoted
as follows: C = AU B.

Similarly C = UA denotes the union of any number of sets A,, where

the index « in turn belongs to some set.

The intersection of the sets A and B is defined to be the set C consnstmg
of the elements that belong to both the sets A and B. The lntersectlon of
the two sets A and B is denoted as follows: C = AN B.

In exactly the same way C = [)A, denotes the intersection of any
number of sets 4, * .

The operatlons just introduced have the following properties, whose
verification is immediate:

*It is a subset.
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6°) AUB = BU A (commutativity of union);
7°) AN B = BN A (commutativity of intersection);
8°) AU (BUC) = (AU B)UC (associativity of union);-
9°) AN (BNC) = (AN B)NC (associativity of intersection);
10°) AU A = 4;
11°) AN A = A;
12°) (AU B)NC = (ANC)U (BN C) (distributivity of intersection), and

(Ua) nB=J(4anB):
13°) (ANB)UC = (AU C) N (BU C) (distributivity of union), and

(OAQ) ucC = O(Aa UC);

14°) AU D = A;
15%) ANQD = &;
16°) AU E = E;
17°) ANE = A;
18°) A C B is equivalent to AUB = Band to ANB = A.

Properties 1°)-18°) possess duality in the sense that if the symbols C,
U, and @ are replaced by D, N, and E respectively in any one of them,
the result is another formula from the same list of 18 formulas. Thus to
each theorem whose proof is based on one of the properties 1°)-18°) there
corresponds a dual theorem. '

The difference of the sets A and B is the set of elements of A that do
not belong to B. The difference of the sets A and B is denoted as follows:
A\B. Thus A\B={z € E : z € A and z ¢ B}. In this definition it is not
assumed that A D B. '

The complement of the set A, denoted A’, is defined to be the set of
elements of E not belonging to A:

A'={z€eE:z¢ A} =FE\ A

The following properties are obvious:
19°) AUA' = E;
20°) AnA =0
21°) @' = E;
22°) B' = @;
23%) (4")' = 4;
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24°) The relation A C B is equivalent to A’ > B';
25°) (AUB)' = A'N B’ (the complement of a union is the intersection of the

!
complements), (UAD,) =NA;
-4 a
26°) (AN B)' = A' UB' (the complement of an intersection is the union of
H
the complements), (ﬂA,,) = J4,,.
a a

Properties 19°)-26°) also possess duality, just like properties 1°)-18°).

The symmetric difference of two sets A and B is the set C defined as
follows: C = (AU B) \ (AN B). The symmetric difference of the sets A and
B is denoted AAB. 1t is easy to see that AAB = (A \ B)U (B A).

1.1.4. Mappings. The Cartesian Product of Sets

The most important concept in analysis is the concept of a mapping of
one set into another. ‘

Let A and B be two sets. Suppose that with each element a of the set
A there is associated a definite element b = g(a) belonging to the set B. In
this case a mapping ¢ is defined from the set A into the set B and can be
concisely denoted as follows:

g:A— B.

The element b is called the image of the element a under the mapping
g, and the element a is called the preimage of the element b. The element
@ € A is often called a variable and the element g(a) € B the value of g at
the element a.

If each element b of the set B has at least one preimage a under the
mapping g, we say that the mapping ¢ is a mapping of A onto B.

Let M C A. Then g(M) denotes the set of those elements of B that are
the images of elements @ € M. The set g(M) is called the image of the set
M under the mapping g.

Thus if g: A — B and 9(4) = B, then g is a mapping of A onto B. If
9(A) C B, we say that g is a mapping of A into B.

If N C B, we denote by 971 (N) the set of elements of A whose im-
ages under the mapping ¢ lie in N. The set g~ 1(N) is called the complete
preimage of the set N under the mapping g.

It is sometimes convenient to call a mapping ¢ : A —~ B a function
‘with domain of definition 4 and range of values contained in B. In some
areas of mathematics, depending on the nature of the sets A and B and the
properties of g, the mapping ¢ is called an operator, a functional, etc.
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A mapping g of the set A onto the set B is said to be one-to-one (or
a bijection) if each element of the set B has only one preimage under the
mapping g.

Ifg: A — B and if it follows from the relation a # o' that g(a) # g(a'),
the mapping ¢ is called an injection. Thus in this case for any b € B the
equation g(a) = b has at most one solution. An injection is a one-to-one
mapping of A into B.

If g: A — B and if for each b € B the equation g(a) = b has at least
. one solution, then the mapping ¢ is a surjection. A surjection is a mapping

of A onto B.

According to what has been said a bijection is simultaneously an injec-
tion and a surjection, i.e., for any b € B the equation g(a) = b has one and
only one solution.

Obviously if g is a one-to-one mapping of a set A onto a set B or a one-
to-one correspondence between the elements of these two sets, it is possible
to define the mapping ¢g~! inverse to g, i.e., knowing the element b it is
possible to determine the element a uniquely from the equation g(a) = b
and then set a = g~ (b).

Let A be a set. Consider a subset R of the set of all ordered pairs (a,b)
of elements of this set. If (a,b) € R, we say that a and b are connected by
the relation ¢ = pgp and denote this fact a ~ b. The relation ¢ is called

an equivalence relation if it is reflexive (i.e., a ~ a for any element a € A),
©
symmetric (i.e., if a ~ b, then b ~ a), and transitive (iie,ifa~band b~ ¢,
v o v ")
then a ~ ¢).
"3

It is not difficult to verify that these conditions are necessary and sufli-
cient for the relation v to partition the set A into disjoint classes.

Indeed, a partition of the set into classes defines a certain equivalence
relation. In this situation a ’” b means that a and b belong to the same class.

Conversely, if ¢ is some equivalence relation on the set 4 and K, is the
class of clements z € A equivalent to A, then by reflexivity a € K,. We shall
show that two such classes either do not intersect or coincide. Let ce A
and ¢ € K, and ¢ € K, i.e., c~a andc~b Then by symmetry a ~ ¢

73

and by transitivity a ~ b By t.hls relation lf z € K,, ie., thenz ~a ~ b,
©

and therefore z ~ b, 1e z € K,. In exactly the same way it is proved that
each element y e Ky belongs to K,. Thus two classes K, and K, having a
common element must coincide.

If g is a mapping of the set A into B, then the elements of the set A
whose images coincide form disjoint classes in the set A, i.e. , partitioning
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into classes is closely connected with the concept of a mapping.

We now pass to the study of an important concept—the Cartesian prod-
uct of sets. Let 0 = {1,2,...,n}, and let A;, 4;,..., A, be subsets of some
set A. The Cartesian product of the sets A, denoted [] A, is defined

k=1
as the set of functions f mapping 0 into A such that f(k) € A for all
n

k=1,...,n. Obviously [] Ax can be regarded as the set of all possible
k=1
collections (a,,as,...,a,) with ¢, € A,. Similarly if 0 = {1,2,3,...}, then

[o0ed

[T Ax is the set of all sequences {a1,as,4s,...,}, with a; € A; for any k.
k=1
In exactly the same way if {1 is an arbitrary set and a subset A, of the

set A is defined for each a € 1, the Cartesian product [] A, of the sets A,

a
is defined as the set of functions f mapping 0 into A for which f(a) € A,
for all a € 0. . ‘

If @ ={1,2,...,n}, then ] A, is also denoted A; X A; X - X Ap;

k=1 .
if A= A; = Aj for any ¢, = 1,...,n, the notation A X A X ---A = A" is
used.

The concept of the upper limit of a sequence of sets is also of interest.
Suppose some infinite sequence of sets {A, } is given. The set A consisting
of the points belonging to an infinite number of the sets A, is called the
upper limit of the sequence of sets A, and denoted as follows:

A=1imA4,.

The lower limit of the sequence of sets {A,} is defined as the set A
consisting of the elements belonging to all but a finite number of the sets
A, . For the lower limit of a sequence of sets we use the following notation:

A=limA,.

If a sequence of sets is monotonically increasing, i.e., A; C A; C Ag C .
..., then

’ —

limA,, = ll An = A...

5

|

ot

1

-
"

Similarly if a sequence of sets is monotonically decreasing, then

s

limA, =limA4, = () 4.

=1
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1.2. The Cardinality of a Set

Two sets are said to be equivalent if a one-to-one correspondence exists
between them. We shall say that equivalent sets have the same cardinality
or cardinal number. Thus with each set a certain object is associated—its
cardinality—and the same cardinality is associated with equivalent sets.

A set is called finite if it is equivalent to the set of natural numbers
{1,2,...,n} for some n. It is natural to denote the cardinality of such a set
by the same letter n.

The first infinite cardinal is the cardinality of the set of all natural
numbers {1,2,...,}. Sets of this cardinality are called countable, and we
shall denote their cardinality by the letter a.

The cardinality of the set of points of the interval [0,1] is called the
cardinality of the continuum. This cardinality is denoted by the letter c.

The cardinality of an arbitrary set X will be denoted by the symbol
m(X).

EXAMPLES

1. The set of points of a sphere in three-dimensional space is equivalent
to the set of points of the extended plane. A one-to-one correspondence can
be established using stereographic projection, for example.

2. The set of rational numbers is countable. Let r = p/q, where ¢ > 0
and p and ¢ are integers and the fraction is in lowest terms. We call the
number |p| + ¢ the height of the rational number f. It is clear that the
number of fractions having a given height is finite. It then remains only to
enumerate all the rational numbers having heights 1, 2, .... Then every
rational number will receive one index—a natural number.

3. The set of points of an interval [a,b], a # b, is uncountable. Indeed
suppose, to the contrary, that the set of peints of the interval can be arranged
in a sequence

Z1yZ2y--3Tpyeese

- Divide the interval [a,b] into three equal parts. Choose a part not -
containing the point z, in either its interior or on its boundary. We denote
the interval chosen by A;. We then denote by A; one of the three equal parts
of the interval A, not containing the point z,, etc. The infinite sequence of
intervals Ay D A3 D -+ D A; D --- has one common point v by a well-
known theorem of analysis. The point 4 belongs to each of the intervals
A and consequently cannot coincide with any of the points z,. Thus the
sequence Ij,Z2,...,Zn,... cannot contain all the points of an interval.



