Algorithms for

Chemical Computations

Ralph E. Christoffersen

L ACS Symposium Series 46 ~—m

£ 17083
Algorithms
for Chemical Computations

Ralph E. Christoffersen, EDITOR
The University of Kansas

A symposium sponsored by
the Division of Computers
i in Chemistry at the 171st
Meeting of the American
Chemical Socigty, New York, N.Y.,

Aug. ERERG

ACS SYMPOSIUM SERIES 46

“festyy
AMERICAN CHEMICAL SOCIETY

WASHINGTON, D. C. 1977

Library of Congress TIE Data

Algorithms for chemical computations.
(ACS symposium series; 46 ISSN 0097-6156)

Includes bibliographical references and index.

1. Chemistry—Data processing—Congresses. 2. Algo-
rithms—Congtesses. .

L Christoffersen, Ralph E., 1937- . IL Ameridin
Chemical Society. Division of Comp -in Chemistry.

L Series: American Chemical Society. ACS symposium
series; 46.

QD39.3.E46A43 540°.28°5 77-5030
ISBN 0-8412-0371-7 ACSMCS8 46 1-151
Copyright © 1977

American Chemical Society

All Rights Reserved. No part of this book may
be reproduced or transmitted in any form or by
any means—graphic, electronic, including photo-
copying, recording, taping, or information storage
and retrieval systems—without written permission
from the American Chemical Society.

PRINTED IN THEB UNITED STATES OF AMERICA

ACS Symposium Series

Robert F. Gould, Editor

Advisory Board
" Donald G. Crosby

Jeremiah P. Freeman
E. Desmond Goddard
Robert A. lHofstader
John L. Mirgrave
Nina I. McClelland
John B. Pfeiffer
Joseph V. Rodricks
Alan C. Sartorelli
Raymond B. Seymour
Roy L. Whistler
Aaron Wold

FOREWORD

The ACS SymrosiuMm SeriEs was founded in 1974 to provide
a medium for publishing symposia quickly in book form. The
format of the Sertes parallels that of the continuing ApvaNcEs
N CHEMISTRY SERIES except that in order to save time the
papers are not typeset but are reproduced as they are sub-
mitted by the authors in camera-ready form. As a further
means of saving time, the papers are not edited or reviewed
except by the symposium chairman, who becones editor of
the book. Papers published in the ACS SymiosruM SERIES
are original contributions not published elsewhere in whole or
major part. and include reports of research as well as reviews
since symposia may embrace both types of prescntation.

\get— -

PREFACE

Af computing hardware and software continues to pervade the various

areas of chemical research, education, and technology, various im-
portant developments begin to emerge. For example, for areas in which
large “number crunching” is required, larger and faster computing sys-
tems have been developed that incorporate parallel processing, which
have provided substantial increases in speed of problem solving compared
with sequential processing. In other areas, such as data acquisition and
equipment control, minicomputers and “midicomputers” have been- de-
signed and built to provide substantial improvements in both the quality
of the data collected and the implementation of new experiments that
could not be performed without the computer system assistance. Equally
important developments in software have also evolved, from the imple-
mentation of convenient timesharing systems for program development
to the development of a variety of application program “packages” for
use in various chemical research areas. -

While the limits achievable through better hardware design or more
efficient programming of available algorithms are far from being reached,
it is now becoming apparent that the algorithms themselves may present
both substantial difficulties and opportunities for significant progress. In
other words, it may no longer be a feasible strategy to assume that either
a faster computer or a more efficiently programmed existing algonthm
will be adequate in solving a given problem.

To focus more clearly on this emerging area of importance, a sym-
posium was organized as a part of the Fall American Chemical Society
Meeting in San Francisco, on August 30, 1976. The goal was to bring
together several experts in the development of algorithms for chemical
research so that the state of the art might be assessed. These persons,
whose papers are included in this volume, discussed not only the signifi-
cant developments in algorithms that have already occurred, but also
indicated places where currently available algorithms were not adequate.

While it is not possible in a single symposium to discuss the entire
spectrum of areas where significant algorithmic development has occurred
or is ngeded, an attempt was made to include several of the important
areas where progress is evident. In particular, the papers in this volume
include discussions of the use of graph theory in algorithm design, algo-
rithm design and choice in quantum chemistry, molecular scattering,
solid state description and pattern recognition, and the handling of

vii

chemical information. As both the authors and the topics indicate, the
general topic is extremely diverse in scope, involving expertise from
several disciplines in the search for new and improved algorithms. While
this area is currently in its infancy, its potential impact is great, and it
is hoped that these papers will serve both as a reference to the current
state of the art and as an impetus to extend the study of algorithmic
development to other areas as well.

The University of Kansas : RavrpH E. CHRISTOFFERSEN
Lawrence, Kansas
December 1976

BB r.« cdrr0

Preface

L

2’

CONTENTS

Graph Algorithms in Chemical Computation

Robert Endre Tarjan

Algorithm Design in Computational Quantum Chemistry

Ernest R. Davidson
Rational Selection of Algorithms for Molecular Scattering

Calculationsccoeveeeeventonsanensnsoanss e

Roy G. Gordon
Molecular Dynamics and Transition State Theory: The Simulation

of Infrequent Eventsccciietiiiiiniinneennneanannnc

“Charles H. Bennett .
Newer Computing Techniques for Molecular Structure Studies by

X-Ray Crystallographyccoiiiiiiivnannns teterenaaee

David J. Duchamp

Algorithms in the Computer Handling of Chemical Information

Louis J. O’Korn

...

...

21

52

98

122

Graph Algorithms in Chemical Computation

ROBERT ENDRE TARJAN*
Computer Science Dept., Stanford University, Stanford, CA 94305

1. Introduction.

The use of computers in science is widespread. Without
powerful number-crunching facilities at his** disposal, the
modern scientist would be greatly handicapped, unable to perform
the thousands or millions of calculations required to analyze his
data or explore the implications of his favorite theory. He (or
his assistant) thus requires at least some familiarity with
computers, the programming of computers, and the methods which
might be used by computers to solve his problems, 4n entire
branch of mathematics, numerical analysis, exists to ana.lyze
the behavior of numerical algorithms.

However, the typical scientist's appreciation of the computer
mey be too narrow, Computers are much more then fast adders and
multipliers; they are symbol manipulators of & very general kind,
A scientist who writes programs in FORTRAN or some similar,
scientifically oriented computer language, may be unaware of the
potential use of computers to solve computational, but not
necessarily numeric, problems which might arise in his research.

This paper discusses the use of computers to solve non-
numeric problems in chemistry. I shall focus on a particuler

problem, that of identifying chemical structure, and examine
computer methods for solving it. The discussion will include

* This research was partially supported by the National Science
Foundation, grant MCS75-22870, and by the Office of Naval
Research, contract NOOOlL-76-C-0688,

*% For the purpose of smooth reading, I have used the masculine
gender throughout this paper,

2505541

2 ALGORITHMS FOR CHEMICAL COMPUTATIONS

elements of graph theory, list processing, analysis of algorithms,
and computational complexity. I write as a computer scientist,
not as a chemist; I shall neglect details of chemistry in order to
focus on issues of algorithmic applicability, simplicity, and
speed, It is my hope that some readers of this paper will become
interested in applying to their own problems in chemistry the
methods developed in recent years by computer scientists and
mathematicians. ,

The paper is divided into several sections. Section 2
discusses representation of chemical molecules as graphs,
Section 3 covers complexity measures for computer algorithms.
Section 4 surveys what is known about the structure identifica-
tion problem in general., Section 5 solves the problem for mole-
cules without rings. Section 6 gives a method for analyzing a
molecule by systematically breaking it into smaller parts.
Section 7 discusses the case of "planar" molecules. Section 8
outlines a complete method for structure identification, and
mentions some further applications of the ideas contained herein
to chemistry.

2. Molecules and Their Representation,

Consider a hypothetical chemical information system which
performs the following tasks. If a chemist asks the system about
a certain molecule, the system will respond with the information
it has concerning that molecule. If the chemist asks for a
listing of all molecules which satisfy certain properties (such
as containing certain radicals), the system will respond with all
such molecules known to it, If the chemist asks for a listing of
possible molecules (known or not), which satisfy certain
properties, the system will provide a list.

Such an information system must be able to identify molecules
on the basis of their structure. Given a molecule, the system
must derive & unique code for the molecule, so that the code can
be looked up in a table and the properties of the molecule
located, It is this coding or cataloging problem which I want to
consider here. A number of codes for molecules have been proposed
and used; e.g. see (3,2,3,4). The existence of many different
codes with no single standerd suggests the importance and the
difficulty of the problem, I shall attempt to explain why the
problem is difficult, and to suggest some computer approaches to
it.

To deal with the problem in a rigorous fashion, we couch it
vithin the branch of mathematics called graph theory. A graph
6 = (V,E) is a finite collection V of vertices and a finite
collection E of edges. Each edge (v,w) consists of an
unordered pair of distinct vertices., Each edge and each vertex
may in addition have a label specifying certain information

1. TARjAN Graph Algorithms 3

about it, We represent a chemical molecule as a graph by
constructing one vertex for each atom and one edge for. each
chemical bond; a ball-and~stick model of a molecule is really a
graph representation of it., We label each vertex with the typé “of
atom it represents., See Figure 1 for an example.

Two vertices v and w of a graph are said to be adjacent
if (v,w) 4is an edge of the graph, If (v,w) is an edge, and
v is a vertex contained in it, the edge and vertex are said to
be incident. Two graphs G, = (Vl,El) and G, = (VE,EQ) are

said to be isomorphic if their vertices can be identified in a
one~to-one fashion so that, if vy and w, are vertices in Gl

and Vs and W are the corresponding vertices in G2 » then
(vl,wl) is an edge of G, if and only if (v2,w2) is an edge

w, ; and

Vir Vo3 W ¥
(vl, W) (Vg’wg) must have the same labels if the graphs are

labelled.

The problem we shall consider is this: given two graphs,
determine if they are isomorphic. Or: given a graph, construct
a code for it such that two graphs have the same code if and only
if they are isomorphic. Notice that this mathematical abstraction
of chemical structure identification neglects some details of
chemistry., For instance, we allow bonds between only two mole-
cules, thereby preeluding the representation of resonance struc-
tures, and we ignore issues of stereochemistry (if two bonds of a
carbon atom are fixed, our médel allows free interchanging of the'
other two, whereas in the real world such interchanging may
produce stereoisomers; see Figure 2). However, these are
differences of detail only, which can easily be incorporated into
the model; we neglect them only for simplicity. Note also that
our model does not allow loops (edges of the form (v,v)), but
it does allow multiple edges (which may be used to represent
multlple bonds, or for other purposes),

A generalization of the isomorphism problem is the subgraph
isomorphism problem. Given two graphs G = (v B)} and

G, = (2,.E2) » We say Gy is a subg?aph of G, if vy is a
subset of V2 and El is a subset of E2 . The subgraph

of G2 . Furthermore the pairs

isomorphism problem is that of determining if a given graph Gl
is isomorphic to a subgraph of another given graph G2 « This is

one of the problems our hypothetical information system must solve
to provide a list of molecules containing certain radicals. We
shall deal with this problem briefly; it seems to be much harder
than the isomorphism problem,

If a computer is to efficiently encode molecules it must
first have a way to represent a molecule, or a graph. We consider

4 ALGORITHMS FOR CHEMICAL COMPUTATIONS

Figure 1. Graphic representation of benzene

Figure 2. Stereoisomers

1. 'rAnJAN Graph Algorithms 5

two standard ways to represent graphs in a computer. The first is
by an adjacency matrix., If G = (V,E) is a graph with n

vertices numbered from 1 to n , an adjacency matrix for G is
the n by n matrix M= (mi .j) with elements O and 1, such

that m, 4 = 1 if (vi,vj) is an edge of G and mi,j= O other-

wise. See Figure 3(a), (b). Note that M is symmetric and that
its main diagonal is zero. The matrix M is not & code for G
since it is not unique; it depends upon the vertex numbering.

An sdjacency matrix representation of a graph has several
nice properties, Many natural graph operations correspond to
stendard metrix operations (see (5) for some examples). The bits
of M can be packed in groups into computer words, so that

storage of M requires only ne/w words, if w is the word

length of the machine (or only n2/2w words, if advantage is
taken of the symmetry of M). If M is packed into words in
this way, the bits can be processed w at a tinme, at least in
certain kinds of computations.

However, the matrix representation has some serious disadven-
tages. An important property of graphs representing chemical
molecules is that they are sparse; most of the potential edges are
missing., Since each atom has a fixed, small valence, the number of
edges in & graph representing e molecule is no more than
some fixed constant times n , the number of vertices. However,
in an arbitrary graph the number of edges can be as large as

(ne-n)/z (or larger, if there are multiple edges). An adjacency
matrix for a sparse graph contains mostly zeros, but there is no
good way of exploiting this fact. It has been proved that testing
many graph properties, including isomorphism, requires examining
some Fixed fraction of the elements of the adjacency matrix in the
worst case (6). Any algorithm which uses a matrix representation

of a graph thus runs in time proporticnal to at least u2 in the
worst case. If we wish to deal with large graphs and hope to get
a running time close to linear in the size of the graph, we must
use a different representation.

The one we choose is an adjacency structure. An adjacency
structure for a gragh G = (V,E) is a set of lists, ome for each
vertex., The list for vertex v contains all vertices adjacent
to v . Note that a given edge (v,w) 1is represented twice;

w appears in the adjacency list for v and v appears in the
adjacency list for w . See Figure 3(c).

n adjacency structure is surprisingly easy to define and
menipulate in FORTRAN or any other standard programming language.
We use three arrays, which we may call sdjacent to, vertex, and
next. For any vertex v , the element e, = adjacent to (v)

represents the first element on the adjacency list for vertex v.
The corresponding vertex is vertex(el) , and the element

ALGORITHMS FOR CHEMICAL COMPUTATIONS

= O H O K O
H O O FH O K
o - M O H O
or O r O K
H O K O O
O Fr O O K

(a) (v)

R T
Ll
W =
“ e

NN N ERC Y. NN

1 2 3 Ik 5 6
adjacent to: [1|2|8|L|1k|6

123 4567 891011 12 15 1k 15 16 17 18

vertex: | 21 14| L{6] 1{3] 2161 2tk 3{5(3]|5{4161(5

next: 31715(121 /11091 11}/118]13{15 16 17

(a)

Figure 3. Graphic representations: (a) graph, (b) adjacency matrix, (c) adja-
cency structure, and (d) array representation of adjacency structure

1. TARjAN Graph Algorithms 7

e, = next(el) represents the next element on the list. A null
¢lement indicates the end of the list, See Figure 3(d). The
total amount of storage required by these arrays is n+hm , vhere
n 1is the number of vertices in the graph and m is the number of
edges; the total storage is thus linear in the size of the graph.
Searches and other natural graph operations are easy to implement
using such a data structure; e.g., see (7, 8). If the graph is
labelled we can use two extra arrays which give vertex and edge
labels, Athough the matrix representation of a graph is simple
and mathematically elegant, the adjacency structure representation
seems to be much more useful for computers.

3. Notions of Complexity.

If we are to discuss computér methods, we need same way of
megsuring the performance of an algorithm, We would like our
code for molecules to be simple, natural, and easy to campute.
Concepts like "simple" and "natural", although very important in
any real-world cataloguing system, are difficult to define and
quantify., We shall use a measure based on & machine's point of
view, rather than on a human's. Though an algorithm good by such
a measure may be unwieldy for human use, at best a method useful
for machines will also be useful for people. At worst, such a
measure provides a firm base for discussion of the merits of
various methods. :

One possible measure of algorithmic complexity is program
size. Suéh a measure is related to the inherent simplicity or
complexity of a method. This measure is static; it is independent
of the size or. structure of the particular input data. Some other
possible measures are dynamic; they measure the amount of a
resource used by the method as a function of the size of the input
data, Typical dynamic measures are running time and storage
space.

Program size as a measure has the disadvantage that in many
cases the simplest-algorithm is a brute force examination of all
possibilities; the running time of such an algorithm is exponen-
tial in the size of the input and thus only very small graphs can
be analyzed. The algorithms we shall consider all use storage
space linear or quadratic in the number of vertices in the input
graph; thus storage space as a measure does not discriminate
finely enough for our purposes. The running time of an algorithm
is strongly related to the algorithm's usefulness if it is rum
many times, We therefore choose running time as a function of
input size as our measure of complexity,

How shall we measure running time? One possibility is to run
the program several times on various sets of input data and
extrapolate. This approach is very dangerous., If the number of
examples tried is too small, the extrapolation is probebly
meaningless.. If the number of examples tried is large and drawn

8 ALGORITHMS FOR CHEMICAL COMPUTATIONS

from a suitably defined random population, the extrapolation may
be statistically meaningful, However, defining a random graph
in a way which is realistic for chemistry is a very tricky
problem, Furthermore any statistical method may miss rare but
very bad cases; we would not like our cataloguing system to spend
hours on an occasional bizarre molecule, We are therefore only
satisfied with a careful theoretical analysis of an algorithm
leading to a worst-case bound on its running time.

To account for veriability in machines, we ignore constant
factors and pay attention only to the asymptotic growth rate of
the running time as a function of the size of the problem graph.
Our measure is thus machine independent and most valid for large
graphs., If machine-dependent constant factors and running time
on small graphs are of interest, computer experiments or a more
detailed analysis must be used, For convenience, we shall use the
notation " f(n) is O(g(n)) " to denote that the function £(n)
satisfies f(n) < cg(n) for some positive constant ¢ and all
n , where f and g are non-negative functions of n ,

4, Isomorphism and Subgraph Isomorphism,

The isomorphism problem for general graphs is not an easy
one, Given two graphs Gl and G2 of n vertices, the number

of possible one-to-one mappings of vertices is n! , and a brute
force approach, which tries all the possibilities, is too time-
consuming except for 'small graphs., A backtracking search (9)»

fares somewhat better. Initially, one vertex from each graph is
chosen, and these vertices are matched. In general, some vertex
Wy adjacent to an already-matched vertex vy in Gl is chosen

and metched with some vertex W, adjacent to the vertex Vo in
62 previously matched to vy . Then Wy and w, are compared

to make sure their adjacencies with already-matched vertices are
consistent. If so, a new vertex for matching is chosen. If not,
the last matched pair is unmatched end a new matching tried.

The process continues until either a1l vertices are matched or
there is found to be no way of matching the vertex sets of the
two graphs., '

Backtrack search saves time over the brute force method by
abandoning an attempt at matching as soon as it is known to fail.
The rmnning time of backtrack search depends in a complicated way
upon the structure of the graph; the best we can say in general is
that if d is the maximum valence (number of vertices adjacent to
a given vertex) in either graph, the maximum running time of back-
track search is 0((d-1)") -- still exponential, but better than
brute force, ,

The most successful algorithms for general graph isomorphism
use the backtrack approach (as a fall-back method) in combination

1. TarjAN Graph Algorithms 9

with a partitioning method (10,11,12,13). The idea is to partitiom
the combined vertex sets of the two graphs so that any isomorphic
mepping between the graphs preserves the partitioning., The method
has four main steps.

1. Choose an initiel partition of the vertex sets,

2., Refine the partition. If any subset of the partition
contains more vertices from one graph than from the other,
go to step L.

De If each subset of the partition contains a single vertex
from each graph, try the implied matching to see if it gives
en isomorphism, If it does, halt with the isomorphism; if
not, go to step 4. If some subset contains two or more
vertices from one graph, choose a vertex in this subset from
each graph, match these vertices, and go to step 2 (the new
matching allows further refinement of the partition).

4, Backtrack, Back up to the partition existing when the
last match was made, Try a new match and go to step 2. If
all matches have been tried, back up to the previous match.
If all possibilities for the very first match have been
tried, halt., The graphs are not isomorphic.

For the initial partition we divide vertices up according to
their labels and their valences. Other more elaborate
partitionings are possible; see (1%,15).

We carry out the refinement. step in the follow'_ing way. For
each vertex, we determine the number of adjacent vertices in each
subset of the partition. This information itself partitions the
vertices, We take the intersection of this partition with the old
pertition as our new partition, We repeat this refining step
until no further refinement takes place, Implementation of the
repeated refinement step is somevwhat tricky; Hopcroft (16) has
provided a good implementation. The effect of matching two
vertices in step 3 is to place them by themselves in a new subset
of the partition. Thus step 3 guarantees refinement of the
partition. See Figure 4 for an example of the application of the
algorithm,)

The idea behind this algorithm is to use ell possible local
means of distinguishing between vertices before guessing a match.
The method seems to work quite well in practice, It is possible
that some version of this partitioning method has a time bound
which is a polynomial function of n . (To prove this requires
showing that the amount of backtracking is polynomial in n ; the
refinement step requires only O(m log m) time, where m is the
number of edges, if Hopcroft's implementstion is used,) However,
the present theoretical bounds on the slgorithm are no better than
those for backtrack search. It is a major open question whether
a polynomial-time algorithm exists for the general graph
isomorphism problem.

The situation for the subgraph isomorphism problem is some-
what mett=r understood and somewhat more gloomy. It is possible

