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1. Types of Heat Transfer Mechanisms

Heat is defined as energy transferred by virtue of a temperature difference or gradient
and is vectorial in the sense that it flows from regions of higher temperature to
regions of lower temperature. The basic modes of heat transfer are conduction and
radiation.

Conduction is the transfer of heat from one part of the body at a higher temperature
to another part of the same body at a lower temperature, or from cne body at a
higher temperature to another body at a lower temperature in physical contact with
it. The conduction process takes place at the molecular level and involves the transfer
of energy from the more energetic molecules to those with a lower energy level. This
can be easily visualized within gases where we note that the average kinetic energy of
molecules in the higher-temperature regions is greater than those in the lower temper-
ature regions. The more energetic molecules, being in constant and random motion,
periodically collide with molecules of a lower energy level and exchange energy and
momentum. In this manner there is a continuous transport of energy from the high
temperature regions to those of lower temperature. In liquids the molecules are more
closely spaced than in gases, but the molecular energy exchange process is qualitatively
similar to that in gases. In solids which are non-conductors of electricity (dielectrics),
heat is conducted by lattice waves caused by atomic motion. In solids which are good
conductors of electricity this lattice vibration mechanism is only a small contribution
to the energy transfer process, with the principal contribution being that due to the
motion of free electrons which move about in the same way as molecules in a gas.

At the macroscopic level we state that the heat flux is proportional to the tempera-
ture gradient with the proportionality factor being identified as the thermal con-

ductivity k:
2 _ (L (1
A dy

This relationship is used for the conduction process in solids, liquids, and gases. From
the foregoing, as one might expect, the magnitude of the thermal conductivity of
electrically conducting solids is higher than for dielectrics and solids in general have
higher conductivity than liquids.

In treating conduction problemsit is often convenient to introduce another property
which is related to the thermal conductivity, namely the thermal diffusivity «

Here p is the density and c is the specific heat.

Radiation, or more correctly thermal radiation, is electromagnetic radiation emitted
by a body by virtue of its temperature. Thus thermal radiation is of the same nature
as visible light, X-rays, and radio waves, the difference between them being in their
wave lengths. The eye is sensitive to electromagnetic radiation in the region from 35
to 75 microns; this is identified as the visible regions of the spectrum. Radio waves
have a wave length of 10* microns and above, X-rays have wave lengths of 0.01 to 1,
while thermal radiation occurs in rays from 0.1 to 100 microns. Al heated solids and
liquids as well as some gases emit thermal radiation. On the macroscopic level, the
calculation of thermal radiation is based on the Stefan-Boltzmann law which relates
the energy flux emitted by an ideal radiator to the fourth power of the absolute
temperature '

e, = oT* 3
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Here o is the Stef: Boltzmann constant. Engineering surfaces in general do not per-
form as ideal radiat ‘s and for real surfaces the above law is modified to read

e = eoT? 4)

The term ¢ is called e emissivity of the surface with a value between O and 1.

Convection, somet nes identified as a separate mode of heat transfer, relates to the
transfer of heat fron a bounding surface to a fluid in motion, or to the heat transfer
across a flow plane ‘ithin the interior of the flowing fluid. If the fluid motion is
induced by a pump, ' lower, fan, or some similar device, the process is called forced
convection. If the fluid motion occurs as a result of the density differences produced
by the heat transfer itself, the process is called free or natural convection. Detailed
inspection of the heat transfer process in these cases reveals that the basic heat
transfer mechanisms are conduction and radiation, both of which are generally in-
fluenced by the fluid motion. In convective processes involving heat transfer to or
from a boundary surface expased to a low velocity fluid stream, it is convenient to
introduce a heat transfer coefficient h defined by Eq. (5), which is known as Newton’s
law of cooling

q ’
< RT;~ T (5)

Here T is the surface temperature and T, is a characteristic fluid temperature.

For surfaces in unbounded convection, such as plates, tubes, bodies of révolution,
etc., immersed in a large body of fluid, it is customary to define k in Eq. {(5) with T,
being the temperature of the fluid far away from the surface often identified asT,m.
For bounded convection, such as fluids flowing in tubes, channels, across tubes in
bundles, etc., T; is usually taken as the enthalpy-mixed-mean temperature. customarily
identified as T .

The heat transfer coefficient so defined may include both radiation and conductive
contributions. If the radiation contribution is negligible, then the total transfer is due
to conduction. In this case we may note

~k(3T/3y)
o YA s (6)
Tf - TS Tf - Ts

The heat transfer coefficient is then recognizable as the gradient of dimensionless
temperature at the surface. Itis sensitive to the geometry, to the physical properties of
the fluid, and to the fluid velocity.

For convective processes involving high velocity gas flows (high subsonic or super-
sonic), a2 more meaningful and useful definition of the heat transfer coefficient is
given by

E = BT, - T (5a)

Here T,, commonly called the adiabatic wall temperature or the recovery temperature,
is the equilibrium temperature the surface would attain in the absence of any heat
transfer to or from the surface and in the absence of radiation exchange between the
surroundings and the surface. In general the adiabatic wall temperature is dependent
on the fluid properties and the properties of the bounding wall. Generally, the adiabatic
wall temperature is reported in terms of a dimensionless recovery factor r defined as

y2
T’.=T[+l'———

2Cp
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The value of r for gases normally lies between 0.8 and 1.0. It can be seen that for low-
velocity flows the recovery temperature is equal to the free stream temperatuie T,.In
this case, Eq. (5a) reduces to Eq. (5). From this point of view, Eq. (5a) can be taken
as the generalized definition of the heat transfer coefficient.

In some physical situations, it is possible to determine analytically the details of
the flow field and the temperature distribution and thereby to evaluate the heat
transfer coefficient k. In these cases which are amenable to analysis, if the heat
transfer process involves both radiation and conduction it is convenient to determine
the magnitude of each mode and to define the heat transfer coefficient in terms of
the conductive contribution alone as given by Eq. (6). Needless to say, in determining
the total heat transfer the radiation contribution must be added. Unfortunately, in
many engineering problems the convective heat transfer cannot be determined analyt-
ically but must be evaluated by experiment. In such cases, if radiation is an important
mechanism it is usually impossible to separate the conductive and radiative modes and
the heat transfer coefficient may not be interpreted as the dimensionless temperature
gradient; rather it is defined by Eq. (5). The chapters on forced and free convection
will concentrate on the determinafion of the heat transfer coefficient.

2. Rate Equations

Equation (1) for heat conduction relates the heat flux to the temperature gradient. It
is an example of the type of phenomenological equation which is used for the pre-
diction of other rate processes. Of particular interest here are the rate equations for
transfer of momentum and mass.

a. Momentum Transfer. Consider a fluid confined between two parallel plates
separated by a distance S with the bottom plate at rest and the top one moving with a
velocity V. Under steady-state conditions the velocity distribution will be linear as
shown in Figure 1. To sustain the motion, a force F must be exerted on the top plate

—\

ft— () —]

Fig. 1.

- and an equal and opposite force is transmitted to the plate at rest. The ratio of this
force to the area of the plate F'/A is called the shearing stress r and for many fluids of
engineering importance its magnitude is directly proportional to the velocity V and
inversely proportional to the plate spacing §

v
= pg— 7
reey N

The proportionality factor u is called the dynamic viscosity and is a property of the
fluid. Fluids such as water and air which conform to this relationship are called
Newtonian fluids. There are other more complex fluids called non-Newtonian which
follow more complex laws and these will be treated in later chapters. Extending the
basic Newtonian law to a more general fluid motion we may write

v, '
r=pul— (8)
(dy)

This shearing stress r may be interpreted in terms of the transport of momentum
pV, The faster moving molecules transfer momentum to their slower moving neighbors
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and consequently there is a net transfer of x momentum in the y direction. This
may be seen from the Newtonian relationship restated as follows

r =(E)_‘i(pvx) - 9)
~\p/dy

The ratio (u/p) has been given its own identity, and is called the kinematic viscosity,

v = E , (10)
P

The dimensions of kinematic viscosity are L2/T which in the English system of units
becomes ft2 /hr. For liquids, both the dynamic viscosity x and the kinematic viscosity
v are primarily dependent on temperature and are relatively insensitive to pressure
except in the neighborhood of the critical point. For gases the dynamic viscosity is
also temperature dependent, showing little sensitivity to pressure whereas the kine-
matic viscosity is strongly dependent on both temperature and pressure, being inversely
proportional to pressure. Generally, the dynamic viscosity is higher for liquids than for
" gases, while the kinematic viscosity of gases tends to be higher than for liquids. As an
example, at atmosphere pressure and 70°F the dynamic viscosity of water is approxi-
mately 50 times higher than that of air, while the kinematic viscosity of air is approxi-
mately 10 times that of water.

b. Mass Transfer. Consider a stagnant pure dry gas positioned between two
parallel surfaces separated by a distance S. The lower surface is wetted, which can be
accomplished by using a porous wick for this surface or by maintaining a thin layer of
liquid on a solid surface. The upper surface is so selected that it is capable of absorbing
any vapor which may be transferred from the lower surface. The partial density of the
vapor immediately above the wetted surface is maintained at C,, while the partial
density at the ideal absorbing surface is found to be negligible. If these conditions are
maintained for a sufficiently long period, a steady state will ensue in which it will be
found that the partial density profile is a linear one. Under these vonditions, the
amount of vapor transported from the lower surface to the upper one is found to be
directly proportional to the value of C, and inversely proportional to the plate
spacing

.“izuc’
A S

(1)

Here W is the mass of vapor transported and A is the surface area. The proportionality
factor D is called the mass diffusivity or the-ordinary coefficient of diffusion, having
units of L2/T or ft? fhr in the English system. If this relationship is extended to more
complex systems we have

¥ _ _poc (12)
A dy

This relation is called Fick’s Law of Diffusion.

3. Basic Fluid Mechanics

In dealing with convection problems it is important to have an understanding of the
behavior of fluids in motion over external surfaces or through enclosed channels. For
liquids or gases flowing over externat surfaces under continuum conditions, it will be
found that the relative velocity between the surface and the fluid goes to zerv at the
surface. Moving away from the surface, the velocity increases rapidly toward the
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free-stream value, effectively reaching the free-stream value at a distance S not far
from the surface. The thin region where the velocity is varying is called the boundary
layer, a term suggested by Prandt! who first recognized this basic phenomenon. Since
the shearing stress is proportional to the product of the vis-
cosity and the velocity gradient, it is clear that substantial
shearing stresses will occur only in the boundary layer where
a velocity gradient exists, whereas outside the boundary the
F—V—>1  shearing stress will be vanishingly smail. Accordingly, it may
be stated that the effects of viscosity are confined to the
boundary layer, whereas outside the boundary layer the flow
may be considered to be inviscid. Thus in analyzing the flow
field over extemal surfaces, the inviscid flow equations may
Fig. 2. be used to predict the free-stream flow field. The resulting
velocity distribution may then be used in conjunction with
the boundary layer equations which include the influence of viscosity for the pre-
diction of the flow field in the immediate vicinity of the wall. In this manner the drag
on external surfaces can be determined.
In the case of heat transfer (or mass transfer) to or from external surfaces placed in
a flow field, it will be found that there is a thermal boundary layer (or concentration
boundary layer) analogous to the velocity boundary layer, within which the influence
of thermal c¢&nductivity (or diffusivity) is confined. Quiside this region the flow is
essentially nonconducting and nondiffusing.
In the case of a fluid flow through an enclosed channel, a boundary layer begins at
the channel entrance. In this entrance region there is an inviscid core flow and a

\
/

pte——— ()} ———

—

Fig. 3.

viscous boundary layer. Some distance downstream the boundary layers grow together
and the velocity is at a maximum in the central region of the duct, decreasing to a
value of zero at the bounding surfaces.

a. Laminar and Turbulent Flows. Osborne Reynolds in 1883 reported that there
are two basically different types of fluid motion which he identified as laminar flow
and turbulent flow. For example, in the case of flow over a flat plate geometry the
boundary layer motion near the leading edge of the plate is smooth or streamlined.
Locally within the boundary layer the velocity is constant and invariant with time.

/,\/J\g‘ <70 Fully 2
Transition—~ 2 turbylent 9

r{;—/“""’regwn ) =D region 3

Fig. 4.

In this region momentum and energy transfer occur by 2 diffusion process as described
by the Newtonijan shearing stress law and by the Fourier conduction relationship. This
is the region of laminar flow. If the plate is long enough or the velocity sufficiently
high and we proceed far downstream, the nature of the flow is markedly changed. At
any point in the boundary layer the velocity varies with time about some mean value
asshown in Fig. 5. The exchange of momentum and energy is now no longer controlled
by diffusional processes. Rather macroscopic eddies randomly move from one fluid
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>
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>
Time
Fig. 5.

layer to another, and in the process momentum and energy are transferred, The
analysis of transport processes in turbulent flows is inherently more difficult than in
the laminar cases and, in general, the treatment is semi-empirical in nature.

The flow does not change abruptly from laminar to turbulent motion, but rather
there is an intermediate region connecting the weli-defined laminar and the well-
defined turbulent motion. This is the transition region. It has been found that the
laminar boundary layer begins to experience transition where the dimensionless
quality {(u, x/v), called the critical Reynolds number for flow over external surfaces, is
of the order of 500,000, but this is dependent on the level of turbulence in the free
stream. ‘

For flow in circular tubes, it has been found that the flow is generally laminar if
the Reynolds number 7 d/v, where # is mean velocity, d is pipe diameter, and v is
kinematic viscosity, is lower than 2,300. If this Reynolds number is greater than
10,000, the flow is considered to be fully turbulent. In the 2,300 to 10,000 region,
the flow is described as transition flow. It is possible to shift these Reynolds values
by minimizing the disturbances in the inlet flow, but for general engineering appli-
cations the numbers cited are representative.

b. Fiow Separation. ln region of adverse pressure gradient such as encountered in
flow over curved bodies, the boundary layer, in effect,
separates from the surface. At this location the shear
stress goes 10 zero and beyond this point there is a
reversal of flow in the vicinity of the wall as shown
in Fig. 6. In this separated region, the boundary layer
equations are no longer valid and the analysis of the
flow is generally very difficult.

4, Units

Generally, the English system of engineering units is used throughout the handbook,
although in a few chapters the authors have selected other systems. To assist the
handbook user, a conversion table (Table 2) is given to aid rapid calculation in any
system of units. Furthermore, when possible, engineering results are presented in a
dimensionless fashion, independent of the unit system, and it is a relatively straight-
forward matter to proceed from the dimensionless number to the desired dimensioned
quantity. A listing of dimensionless groups frequently encountered in heat transfer is
given in Tabie 1.

Fig. 6.

5. General Equations

The following are some of the general equations encountered in heat transfer. They
have been collected in this section for use as a ready reference.
a. Continuity Equations.

Vector form
P, V.0 -0
dat
or
Doy puv -0
. Dt
incompressible

V.V = 0
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TABLE 1. Dimensionless Groups

Group* Symbol Name
Ap/pV2 Eu Euler number
at/r02 Fo Fourier number
(L7dtk/Vdpc R Gz [= (L/d)/RePr] Graetz number
gB (AT L3p2/,2 Gr Grashof number
A/L " Kan Knudsen number
a/D Le Lewis number
V/V ound Ma Mach number
hL/k, hd/k Nu Nusselt number
Vdpcp/ k Pe (= RePr) Peclet number
c u/k Pr Prandtl number
gB(ATIL3p%c ok Ra (= GrPr) Rayleigh number
pVD/u, pVL/u Re Reynolds number
w/pD Sc Schmidt number
h,d/D Sh Sherwood number
k/c,G St (= Nu/RePr) Stanton number
V,2/C, (AT E Eckert number
v2/gL Fr Froud¢ number
fd/v St Strouhal number
pV2L/a We Weber number

*f, = frequency of oscillation
o = surface tension.
Cartesian: 2=_a_+ ui+vi+wi
Dt dt Jdx dy 0z
Cylindrical: 2 -2 ,,2,%3 ., 9
Dt at o r d6 dz
Spherical; D .9, , 9,29 fe @
t ot or r a8 rsin@ d¢

Cartesian: u, v, and w are the velocities in the x, y, and z directions respectively.

%, 9 (o + ooy + Lpw =0
a  dx dy oz
Incompressible
du dv dw
—t—+—=20
dx dy o9z

Cylindrical: v,, ng, and v, are the velocities in the r, 9, and z directions respectively.

g 1 9 19 d
oo Zlpv) + - —lpvy)) + —ov) =0
Lt ot rarPJ f&ﬂpa azp'
Incompressible
‘ ) av
L3y, 12 %
r or r 48 dz
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Spherical: v, vy, and v are the velocities in the r, 6, and ¢ directions respectively

%19, 2 (pvg sin® + (o) = 0
ot P or r sing 9@ rsind do¢
Incompressible
P 18 1 8, .. 1 9y
il —(rzvr) + — (uy 8inG) + — =90
r2 or rsinf 96 rsing d¢

b. Momentum

P

F
®
A
¢

Vector form
DV

P—
Dt

orin terms of A

pl:i‘—, +(V.V)
ot

Equations [Navier-Stokes).

pressure
body force per unit volume
viscosity

second coefficient of viscosity (A = “%4" monatomic gas)

A + 2p (= zero for monatomic gas)

av av
— +(V.VY — +
P[ac ] p[az

-VP+F-Vx[y(VxV)]+V[(C+%p)V~V]

v] p[?—!-i-V(V—Z) _vx(vxw]
a 2

VP + F =V [u(Vx V] + VA +20V.V)

It

il

i

p, p constant
PN L ARFE23'S IS . 1Y
Dt ot
Cartesian
vy o %, 9 dw
dx dy Jz
oo g P afp o o ] af (e, 0, o fow o
Dt dx dx ox ] dy dy oJx dz dx dz
[ 1 [
P@=Fy°£+"a" 2“.‘.9.11+Av.v +i“§£+2€ +i“8_'£q.iv.
Dt dy Jy i dy dz dz oy ax dy ox
- ) b = )
Q.‘f’_= z_£+izua—“’+xv.v +i p(—g+é!)+i-p 8_u+6_w
Dt dz oz 9z Ix Ix dz/] dy| \dz Iy
P, ¢ constant
7
NI R S SR
. dax dz ax 2 a2 92
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Jv 1% dv du oP 2v Fv Pu
pl=+ue—+v—+w— =-—+F o vpl—+—5+ =
at ox dy dz

(&w dw Jw 3w) P (azw Fw aQw)
pl—m+u—+v—+w—) = -—+F, v+ pl—s+ —F + —

o ox dy 6z 3z Gx2  dy? 922
Cylindrical
dv dv ov v au av
vov -1 L2 T 1% T
roor r do dz ar 7 r dé dz

sl 0, owal o[ /1 9o, dvs v\ 9,[1 9, v v
+ — - — + — +—y——+———+—£———+———-——
dz r 8 9z ar r 9¢ or r r i 4 o r

Dv v ov ov \]
p——-z—ze_?_Iz+_‘?_2p,_z+)\V.V +.];£'uf _.l:+_i
Dt dz Oz dz roor dz dar

— +

+ o + 1% 1 ot v, o, 2 v
b 7
ot roar 2 988 922 r 2 99

[Bzve 1 % 1 621)5 8%vg 9 Ov, usjl
b — = —




Introduction  1-11

Spherical
Dv, v+ uv2 [
p_r_i—¢ =Fr_.QE+_a_2“.._r+,\v.v
Dt r ar ar ar

1| ) a %\ 1% 1 4 1 9 g (v
+— —lpusr—[(—14}) + - — + — | — ==
r 89 a\r r o8 rsing d¢ rsing de ar\r

dv av 4v dv 2v, coté v dv
+E 4..,_’_2_6__’.-_ 2 _¢-. 6 +rcot6i _6 +w_r
r| ar r 36 r rsind d¢ r ar \r r od6

1 9 sing 3 [ Vo 1 el a fve) 19v
+ —lu —_— + —t — U F— [ — + - —
r sind d¢ r a9 \sin@ rsing d¢ ar or \r r 8

v v v, cotd v v

LB 1 Te TeCPTN e +sdrd(le), 1%

r r d0 rsing@ dé r or\r r o9
Dv¢ VeV, Lglg cot@ 1 3P
pl— + + = Fy - —_
Dt r r rsing d¢

)
+ 1 iz—(Li+v,+u9cot6)+AV-V]
) sing d¢

3 1L ® 5\l 1 9] |sing a (Y% 1 9
+—|u —+r—{—Ppl+=-—]n — + —
or rsin@ d¢ or\r r d6 r 46 \sin rsinf@ od¢

v v ; v dv
+Els 1 -—r+ri i + 2 cotd smﬂi ¢ + 1 ¢
r rsing d¢ ar\r r 90 \sing/ rsinf d¢

du v, vadu, vy A, vd+ v¢2
pl—+ U, —+— —+ —_—_—
at gr r 30 rsind d¢ r
v dv
NP ] ,2_')+ L 9 (sing 2
or re or ar r2 sing 3¢ o8
L1 ®v, 2w, ¢ v, 2v,cotd 9 du,

2 sin28 62 2 2 a8 2 2gind dg
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—_— U, — +— — — -

dug dug Uy dvy Uy dvg Vg v¢2 cot@
Vo " T e rsing dp r r

g, P f1a ,zie)+ 1 i(smeﬁ)
® 100 “|lPa\ o/ Psinoow 90

p L e 2% % 20 P
r2 sin?8 9¢2 2 90 rsintd r2sinl6 I

[6u¢ dug vy gy, vy ﬁzi . vgU, . Vg Uy coto]

pl—t Vo, — + — — +
ot or r 8¢ rsing i r r
dJu av,\ .
=F¢— 1 ?E«’.u li rz_i + 1 -a— Bmo—-ji)
r 8ing d¢ 2a\ & r2 ginf 39 a0
L1 azv¢ Vg L2 f”_r+ 2 cosf ?_"ﬁ
2 sin?6 a2 r2sin?0 r2ein 9 r2sin?h Ap

c¢. Erergy Equations.

intzrnal energy (per unit mass).

pressure,

internal heat generation.

radiation heat flux vector.

temperature,

thermal conductivity,

mass density

mechanical or viscous dissipation function.
enthalpy (per unit mass).

-®o >0 U

U 0 m it nn

Vector Form

£+¢+V-(kVT)-—V-qr pQE+Pv‘V=P[9_3+P2(l)]

at Dt Dt Dt\p

pQ = Q+ §2+¢ + V.VT) - V.q,
Dt Dt ot
p, k constant

oQ 2 De
=+ @4 kVT =V.q, = p=
ot A
D—i=—.£+£+d>+kV2T-V-qr
Dt Dt ot
For perfect gases
Di DT



