The IMA Volumes £

in Mathematics
and Its Applications Volume 10

Wendell Fleming
Pierre-1ouis L ions

. Editors

Stochastic Differential Systems,
Stochastic Control Theory and
Applications

I\ /4
Soringer-Verlag

World Publishing Corporation

i i csiclisas W—— it ittt




&

Wendell Fleming PlerreLouls Lions
oo |
Stochastic Differential Systems,
Stochastic Gontrol Theory and
~ Applications

" With 10 Hlustrations

&

. Springer-Verlag
World Publishing Corporation



.Wendell Fleming , . Pierre-Louis Lions

Division of Applied Mathematics Ceremade ;

Brown University Universite Paris-Dauphine

Providence, Rhode Island 02912 USA Place de Lattre de Tassigny
75775 Paris Cedex 16
France

AMS Classifications: 60HXX, 93EXX

Library of Congress Cataloging in Publication Data L e
Stochastic différential systems, stochastic control ERE by
theory, and applications.
(The IMA volumes in mathematics and its applications ; \u 10)
“Proceedings of 8 Workshop on Stochastic :
Differential Systems, Stochastic Control Theory, and
Applications, held at IMA June 9-19, 1986 "—Pref.
Bibliography: p.
1. Stochastic systems—Congresses. 2. Differentiable
dynamical systems—Congresses. 3. Control theory—-
Congresses. 1. Fleming, Wendell Helms, 1928-
IL. Lions, P. L. (Pierre-Louis) III. Workshop on
Stochastic Differential Systems, Stochastic Control.
Theory, and Applications (1986 : University of
Minnesota, Institute for Mathematics and its Applications)
IV. Series.
QA402.58463 1988 003 87-28380

© 1988 by Springer-Verlag New York Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York. NY 10010,
USAY}, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or
by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc. in this publication, even if
the former are not especially identified, is not to be taken as a sign that such names, as understood
by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Reprinted by World Publishing Corporation, Beijing, 1990
_for»dnstnbut:on and sale in The People's Republtc of China only

lSBN 0-387-96641-2 Spnnger—Verlag New York Berlin Heidelberg
ISBN 3-540-96641-2 Springer-Verlag Berlin Heidelberg New York
[SBN 7-5062—0542—4



The IMA Volumes in Mathematics and
Its Applications

Current Volumes:

Volume 1: Homogenization and Effective Moduli of Materials and Media
Editors: Jerry Ericksen, David Kinderlehrer, Robert Kohn, and J.-L. Lions
Volume 2: Oscillation Theory, Computation, and Methods of Compensated
Compactness
Editors: Constantine Dafermos, Jerry Ericksen, David Kinderlehrer, and
Marshall Slemrod ‘
Volume 3: Metastability and Incompletely Posed Problems
Editors: Stuart Antman, Jerry Ericksen, David Kinderlehrer, and Ingo Miiller
Volume 4: Dynamical Problems in Continuum Physics
Editors: Jerry Bona, Constantine Dafermos, Jerry Ericksen, and
David Kinderlehrer ‘
Volume 5: Theory and Applications of Liguid Crystals
Editors: Jerry Ericksen and David Kinderlehrer
Volume 6: Amorphous Polymers and Non-Newtonian Fluids
Editors: Constantine Dafermos, Jerry Ericksen, and David Kinderlehrer
Volume 7: Random Media
Editor: George Papanicolaou
Volume 8: Percolation Theory and Ergodic Theory of Infinite Particle Systems
Editor: Harry Kesten
Volume 9: Hydrodynamic Behavior and Interacting Particle Systems
Editor: George Papanicolaou
Volume 10: Stochastic Differential Systems, Stochastic Control Theory and
Applications
Editors: Wendell Fleming and Pierre-Louis Lions

Forthcoming Volumes:

19861987 : Scientific Computation
Numerical Simulation in Oil Recovery
Computational Fluid Dynamics and Reacting Gas Flows
Numerical Algorithms for Modern Parallel Computer Architectures
Mathematical Aspects of Scientific Software
Atomic and Molecular Structure and Dynamics



| POREWORD

This IMA Volume in Mathematics snd its Applications

STOCHASTIC DIFFERENTIAL SYSTEMS, STOCHASTIC
CONTROL ’I‘HEOR.Y AND APPLICATIONS

is the proceedingy of » workshop which was an integral part of the 1986-87 IMA program
on STOCHASTIC DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS. We
are grateful to the Scientific Committee:

Daniel Stroock (Chairman)
Wendell Fleming
Theodore Harris

Pierre-Louis Lions
Steven Orey
George Papanicolaou

for planning and implementing an exciting and stimulating year-long program. We es-
pecially thank Wendell Fleming and Pierre-Louis Lions for organizing an interesting and
productive workshop in an ares in which mathematics is beginning to make significant
contributions to real-world problems.

George R. Sell

Hans Weinberger




PREFACE

This volume is the Proceedings of a Workshop on Stochastic Differential Systems, Stochastic
Control Theory, and Applications held at IMA June 9-19, 1986. The Workshop Program Commit-
tee consisted of W.H. Fleming and P.-L. Lions (co-chairmen), J. Baras, B. Hajek, J.M. Harrison,
and H. Sussmann.

The Workshop emphasized topics in the following four areas.

(1) Mathematical theory of stochastic differential systems, stochastic control and nonlinear
filtering for Markov diffusion processes. Connections with partial differential equations.

(2) Applications of stochastic differential system theory, in engineering and management sci-
ence. Adaptive control of Markov processes. Advanced computational methods in stochas-
tic control and nonlinear filtering. ]

(3) Stochastic scheduling, queueing networks, and related topics. Flow control, multiarm
bandit problems, applications to problems of computer networks and’ scheduling of complex
manufacturing operations.

(4) Simulated annealing and related stochastic gradient algorithms. Connections with statis-
tical mechanics and combinational optimization.

This choice of topics was deliberately made to obtain a mix of traditional areas of stochastic
control theory, and topics arising in newer areas of application. The papers included in this volume
represent a diversity of approaches and points of view. They emphasize variously underlying
mathematical theory, modelling issues and questions of computational implementation.

We would like to take this opportunity to extend our gratitude to the staff of the IMA,
Professors H. Weinberger and G.R. Sell, Mrs. Pat Kurth, and Mr. Robert Copeland for their
assistance in arranging the workshop. Special thanks are due to Mrs. Patricia Brick, and Mrs.
Kaye Smith for their preparation of the manuscripts. We gratefully acknowledge the support of
the Division of Mathematical Sciences and the Engineering and Computer Science Division of the
National Science Foundation and the U.S. Army Research Office.

W.H. Fleming
P.-L. Lions
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O ﬂmallt of ““full bang to- ndm miss®’ for some partially -
? ¢ observed michl#h ito] problems

V. E. Bene?

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

and

Columbia University
New York, New York 10027

R. W. Rishel

Univeisity of Kentucky
Lexington, KY 40506

ABSTRACT

For final value stochastic control problems, the ‘“‘predicted miss" of the title is
the expected final position, conditional on the cumulative information to date, if
no further control is exerted. For partially observed probiems with bounded
control, similar 10 some proposed by Astrb'm. we use PDE methods to show that
predicted miss define:s the switching surfaces for an optima! ‘‘bang-bang" control
‘law whose gist, simply stated, is to reduce predicted miss. The surfaces in

' question are explicitly calculated.



1. Introduction

We report on a simple example of an approach which we believe is effective
for a large class of problems. Consider the “partially observed” control task: For
¢ convex, even, of polynomial growth, and maximal curvature at 0, minimize
E&(yr) subject to dynamics dy, = (z+u,)dt + dw,, with T a final time, z an
unobserved symmetric r.v. of known distribution, w, a Wiener process (noise)
independent of z, and u, causal in the past of the observed y-process, and bounded
by 1 in magnitude. Similar control problems under various constraints are to be

found in [1],{8]. The main results are as follows.

An extension of the “predicted miss” idea used in [2] also yields an optimal
law in the present, partially observed case. The predicted miss is the conditional
expected final value of yr, given information ¥, = o{y,, Oss=1} up to 1, if no

control were exerted from ¢ on.. Here the predicted miss is calculated as
¥ + (T-n3

where z, = E{z |Y;}. This conditional expectation is readily calculated by nonlinear

filtering from the statistics of z. The optimal law takes the form

. U™ = —sgn(y,+(T—1)z,)

—sgn(predicted miss )
ate*

and so represents an extension of the old advice to “bang so as to reduce predicted

miss.” The switching curves are given by the “rotating lines” y+(T 1)z = 0.



2. Innovations formulation
For simplicity, we carry through the development for a r.v. z that is Bernoulli:

z==1 with probability -% each. The general case has exactly the same structure,

modulo finiteness of E exp{zx — -12— 221}, and minor technical conditions.

The innovations formulation serves to change the original partially observed
problem into a completely observed onme by introducing various corditional

moments and their dynamics. In this case the observation equation takes the form

dy, = (z,+u)dt + dv,

-

where dv = innovations (a Brownian motion on Y.), and
Z = E{z|Y,} = E{zly;, 0ss=1}

is the current least squares estimate of z. The class A of admissible controls is that
of all Y.-nonanticipating controls [3]. We calculate, using zp = 0, that by the

Kallianpur-Striebel formula



t o !
'z exp {(,“,;4,, - % { (s +uds

E’exp {ditto. ' m numerator}

H
E'z expiz(y,~yo) = 1 [ u,ds
)

Efexp {ditto. as in numerator}

!
tanh {y,~yo— fu,ds
0

Since we raust solve the problem for starts other than zg = 0, it is convenient to

set 3, = 1aph §,, with & = tanh™!3,, and dynamics
d§, = tanh § dr + dv,

The associated z, dynamics are dz, = (1-3)dv,.

3. TIntuitive discussion and guess

The term Z,d1 driving dy, is a drift. Its overall contribution to yr is just

2.ds’

o Ry g

Thus the expected finul position, E{yr [Y,}, given information up to 1, if no further “

i
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control is exercised (u; = 0 in (¢,7)), is just

r, = E{yr |¥}

| r »
] .
T
=y + IE{;,"Q‘ lY‘P’ + ;.(T"")
'

=y, + £(T—1)

because #, and v, are both martingales on ¥,. The pro&ss r, is the predicted

>

position (or “miss,” since we are aiming at 0). See [2].

We claim that the right thing to do is “full bang to reduce the predicted miss
r,."" This guess is in analogy to a completely observed case described in [2], but it
can be given its own cogency in the present context, as follows: 7, satisfies the

stochastic DE

dr, = dy, + (T —t)dz, — 2,dt

= [1+(7:-r)(l-tanh2€,)]dv, + udt

with § developing independently of u (but not of v!) according to d§, =
tanh £, +dv. The final values r,- and yr are the same, so how could we do better

than to keep r; near zero? Thus we are led to guess an optimal law in feedback

form:
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uf® = —sgn r,

This law gives a linear switching curve y+(T~1)z = 0 in (y, z)-space, with slope

changing linearly in time.

Remark: When we first started on this problem; our initial guess, presented at the
1986 IMA Workshop in Minneapolis, was that ¥ = —sgny, was optimal. It was
primarily the strenuous objections of H J. Sussman to this incorrect conjecture
that guided us to find the right answer. He supplied an involved but convincing
counter-example, which suggested the crystalline doable example~ z =1 a.s: the
last ied to the predicted miss. Sussfnan’s role as critic and midwife is deeply

appreciated.

In the ligh{ of the remark just made we see that (T —1)z is the “‘offset” the
bang-bang law —sgn y, needs to be optixﬁal and use the available information. A
similer offset has appeared in Davis and Clark’s [5] analysis of asymmetric
predicted miss problems. We sketch & proof of the optimality of this offset law by

PDEs, then given the details.

4. A PDE argument: sketch
TT = yr &.8., 50 we use the variables r, and §, moving according to
d§ = tanh §dt + dv,, & = tanh™!zy

dr, = udr + [l+(T—t)(1-tanb2§,)] dv,,

ro = yo + Ttanh™ 'z,
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and look at the Hamilton-Jacobi-Beliman equation
v+ 2vg + 1+@-D(-tanb?D)vg,
+ -;— [L+(T =)(1—tanh?£)Py,, + vetanh £ — |v, | =0

vir = ¢(r)

The characteristic form is only nonnegative; but by regularizatioxy and
approximation to || by smooth even functions, we can use sgn ¢’'(r) = sgn r and
the maximum principle to show that sgn v, = sgnr. Cf. [6], [7]. Thus r = 0

gives the switching curve, i.e.
uf® = —sgn(y,+(T'—n3i)

describes the optimal law: control so as to reduce the predicted final position if no
further control were used. Optimality follows by a classical verification arguments

{31

5. Detalls of PDE argument

To make use of parabolic regularization we adjoin to the probability space an
independent Brownian motion (b,, B,) and allow information about b, to be used
for control. That is, the class A of admissible controls now consists of those which

are nonanticipating with respect to the filtration ¥,\/B,.

For €= 0 consider the e-processes defined uniquely in law by the éguations
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e S drt = wdt + [1+ (T —1)(1 —tanh? §)]dv,
dE =Thoh £t dt + dv, + Mdb,
ry = yo + Ttanh™! 3,

€5 = tanh™' .

The requisite law can be obtained for any admissible u by Girsanov’s theorem [3],

- giving rise to an expectation E¥. Set

T ) = T4, 1, © = Evg (r)

V= inf J'(n).
uehd

Wrifing, for brevity,

o(t, x) = 1 + (T ~¢)[1 - tanh?x]

the dynsmic programming equation for minimizing J* is just
@ v +!.-i-02(t, OV + ot Oy, + -,i-(lﬂ)m + (tanh Ovg — |v,| = 0

with final time coudition v |7 = ¢; in operator form

, F] v
3 [.67 + A']v = ly,|.

We recall {3] the distinction between nonanticipating comtrols and feedback.
controls. The formula u, = — sgnr*® ostensibly defines a feedback_law for equation
(1). More precisely, let (r**, ™) be the vector strong solution (process) of the
stochastic DEs above for the explicit feedback law u, = — sgnr;*; there is then a

causal “‘solution map” S* such that

W s



