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Preface

As was true of Volumes 1 and 2, the purpose of this book is twofold. First,
it attempts to develop a thorough understanding of the fundamental concepts
incorporated in stochastic processes, estimation, and control. Second, and
of equal importance, it provides experience and insights into applying the
theory to realistic practical problems. Basically, it investigates the theory
and derives from it the tools required to reach the ultimate objective of sys-
tematically generating effective designs for estimators and stochastic con-
trollers for operational implementation. 7 )

Perhaps most importantly, the entire text follows the basic principles of
Volumes 1 and 2 and concentrates on presenting material in the most lucid,
best motivated, and most easily grasped manner. It is oriented toward an
engineer or an engineering student, and it is intended both to be a textbook
from which a reader can learn about estimation and stochastic control and
to provide a good reference source for those who are deeply immersed in
these areas. As a result, considerable effort is expended to provide graphical
representations, physical interpretations and justifications, geometrical in-
sights, and practical implications of important concepts, as Wwell as precise
and mathematically rigorous development of ideas. With an eye to practical-
ity and eventual implementation of algorithms in a digital computer, em-
phasis is maintained on the case of continuous-time dynamic systems with
sampled-data measurements available; nevertheless, corresponding results
for discrete-time dynamics or for continuous-time measurements are also
presented. These algorithms are developed in detail to the point where the
various design trade-offs and performance evaluations involved in achieving
an efficient, practical configuration can be understood. Many examples and
problems are used throughout the text to aid comprehension of important
concepts. Furthermore, there is an extensive set of references ifi-each chap-
ter to allow pursuit of ideas in the open literature once an understanding of
both theoretical concepts and practical implementation issues has been es-
tablished through the text.
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x PREFACE

This volume builds upon the foundations set in Volumes 1 and 2. Chapter
13 introduces the basic concepts of stochastic control and dynamic program-
ming as the fundamental means of synthesizing optimal stochastic control
laws. Subsequently, Chapter 14 concentrates attention on the important
LQG synthesis of controllers, based upon linear system models, quadratic
cost criteria for defining optimality, and Gaussian noise models. This chap-
ter and anuch of Chapter 13 can be understood soiely on the basis of model-
ing atid estination concepts from Volume 1. It covers the important topics of
stability and robustness, and synthesis and realistic performance analysis of
digital (and analog) controllers, including many practically useful controiier
forms above and beyond the basic LQG regulator. Finally, Chapter 15 devel-
ops practical nonlinear controllers, exploiting not only the linear control in-
sights from the preceding two chapters and Volume 1, but also the nonlinear
stochastlc system modelmg and both adaptlve and nonlmear ﬁltenng of Vol-
ume 2. : RN TR 5

‘Thus; these three voluthes form a self-contamed and mtegrated source for
studymg stochastic models estimation, and control. Infact, they are an out--
growth’ of a three-qtiarter séquence of" gradUate course$ taught at the’ Air
Force Institute of Technology, and thus the text and problems have received
thorough class testing. Students had prewousiy taken a basic course in ap-
plied probability theory -and many had “also’ taken a first control theory
course, linear algebra, and linear system ‘theory, but the required aspects of
these disciplines have ‘also been developed in Volume 1. The reader'is’ as-
sumed to have been exposed to advanced calculus; differential equations,
and somie vector and métrix analysis on an engineering level. Any mere ad-
vanced mathematical concepts are developed within the text itself, requiring’
only a wnlhngness on the part’of the reader to ‘deal with ‘new’ means of con::
ceiving d problem and its ‘solution. AIthough the mathematics becomes rela-
tively ‘sophisticated at times, efforts are made to motivate the need for and
t0 stress the underlying’ basis of, this sophlstlcatlon AR

“The author wishes to’ express his gratitude to the fany students-who haVe
contributed significantly‘to the writing of this book through their feedback: to
me—in the form of suggéstions, ‘quéstions, encouragement and their own
personal growth. Tregard it as one of God's many blessings that I have had
the privilege to interaet ‘with these individuals and to-contribute to their
growth. The stimulation of techmcal discussions and association with Pro-
fessors Michael Athans, John Deyst, Nils Sandell, Wallace Vander Velde,
William ‘Widnall, and Alan Willsky of the Massachasetts’ Institute of Tech-
nology, Professor David Kleinman of the University of Connecticut; and
Professors Jurgen Gobien, James Negro; J. B. Peterson, and Stanley Robin-
son of the Air Force Institute of Technology has also had-a profound effect
on this work. I deeply appreciate the continual support provided by Dr. Rob-
ert Fontana, Chairman of the Department of Electncal Engmeenng at AFIT
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and the painstaking care with which many of my associates have reviewed
the manuscript. Fipally, I wish to thank my wife, Beverly, and my children,
Kristen and Keryn, without whose constant love and support this effort
eoduld not have been fruitful.



Notation

Vectors. Matrices

Scalars are denoted by upper or lower case letters in italic type.

Vectors are denoted by lower case letters in boldface type, as the vector x
made up of components x;.

Muatrices are denoted by upper case letters in boldface type, as the matrix A
made up of elements 4;; (ith row, jth column).

Random Vectors (Stochastic Processes), Realizations (Samples),
and Dummy Variables '

Random vectors are set in boldface sans serif type. as x(-) or frequently just
as x made up of scalar components x;: x(-) i1s a mapping from the sample space
Q into real Euclidean n-space R": for each ), € Q. x(s,) € R".

Realizations of the random vector are set in boldface roman type. as x:
X(wy) = X,

Dummy variables (for arguments of density or distribution functions, integra-
tions, etc.) are denoted by the equivalent Greek letter, such as & being associated
with x: e.g., the density function f,(£). The correspondences are (x.&), ly.p),
(2.8).(Z, Z).

Stochastic processes are set in boldface sans serif type, just as random vectors
are. The n-vector stochastic process x{-,-) is a mapping from the product space
T x Qinto R". where T is some time set of interest: for each ;€ T and w, € Q,
x(t;, w) € R". Moreover, for each t;e€ T, x(t;,) is a random vector, and fqr
each w, € Q, x(-,w;) can be thought of as a particular time function and 1,
called a sample out of the process. In analogy with random vector realizations,
such samples are set in boldface roman type: x(-.,) = X(-)and x(¢,. ) = Xit;).
Often the second argument of a stochastic process is suppressed: x(1.) is often
written as x(t). and this stochastic process evaluated at time t is to be dis-
tinguished from a process sample x(r) at that same time.

~
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xiv NOTATION
Subscripts

ideal

model (command generator model)
nominal: or noise disturbance
reference variable

steady state

truth model

initial time

: augmented

c: continuous-time;
or controller

d: discrete-time;
or desired -

€ error

J2f3 findl bise;

or filter (shaping filter)

©S=-3-338 -

Superscripts

wright inverse. .0

T:  transpose (tatrix) -
A ~-pseudoinverse: . .-

*::. complex-conjugate transpose

or optimal i estimate .o
- Tl inverse(matrix) 1o oo oo o7 Fourier transform; 9
" left inverse oo 4t or steady state solution-

Matrix and Vector Réldi‘iéhships’

A >0: Aispositive definite.
A 20; Ais posxtxvcsemldeﬁmte B
x<a: componentmscz X1 < 4y, x, <ay.. so,and x, <4,

Commonly Used
Abbrev:atwns and Symbols e SR

E{} ' CXWCtaUOﬁ‘ Selee s T wapil —-"Wlth probabrhﬂty ofone

E{‘|'} conditional expectation | determinant of
_exp(°) exponential [l norm of
tim! * ‘Hmit TR © "' ‘matrix square roOt of a

Lim.  -limit in medn (square) ST (see Volume 1y

() ‘natural log- AT C eltemenit of

M’ miean Square I " “subset of

mak! - maximum' AL s “setof; such as

mi’pi +minimum EEKIREEREE AR S "‘xeX X< al, xe the set -

R Euch&ean n- space' R of x € X such'that ~ -

Csgn(c)’ sighum (sign of) T g toralt i
tr(‘) trace U e i e gePoo

-~ N M
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List of symbols and ’p;tges where they

are defined orﬁrst‘,lgsed

>

<

FEg @

I
I3

= ®

KRRe AL
*

=}

D)

[« -
""’é%%x S

S e mmmm

= >
=

'\\'-q
»

153
a7

105:
688
167
167
6176
74; 76

105

69:231

223

13,26
13:15:47; 48

~781589;231
gt

131: 132
5
5
.
137
151
151

9
Y

50; 100; 115
24

6: 88

5

31

54 -

15:24

6

5

104

96

16; 69;73; 186
71 78:95; 242
167

e
L

S

-

AR FARRFEIET

P Vb

b=}

Ga[ x(1). 1]

= F n R Re

A

74
% & 0

—

-

ZZEEODE S
29 v )

167
167
6
o
16: 188

148
1505:
- 6,184

5
45"
76 -
45"

<105

10~

75 -

ing

t6:°19: 185
100

101
15;70; 73; 186
71:95: 188

797
7144 145

144
144 145
148
148

75

26 4C
46 47
48
21
46’ 47
48
90
92

93

93



P,
p(t)
p
Pelt;)
Q
Q
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q
qx
Go
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; SR IpR CHAPTE’R 13

jfi‘Dynamxc prog"ammin g

INTRODUCTION

Up to thxs point, we: have consxdered estimation; of uncertam quantmes on
the basjs of both sampled -data (or continuoys) measurements from a dynamic
systemn. and mathematical models describing that.system’s characteristics, Now
we wish .to consider exerting appropriate cantrel aver such a-system, so as:to
make ‘it 'behave in a manner that we desire. This chapter 'will formulate the
optimal stochastic control ‘problem, provide the theoretical foundation for its
solution,’ and dlSCUSS the potentlzﬂ structuire for such’ solutjons. The two sub-
sequent chapters will then investigate the practical design. of stochastic. con-
trallers.for problems adequately described by the “LQG? assumptions (Linear
system 'model,: Quadratic: cost: criterion for optimality,.and - Gaussian noise
inputs; see Chapter 14) and for prob]ems requiring nonlinear models (see
Chapter 15).

Within this chapter, Sections 13 2and 13. 3 are meant to be a basic overview
of the optimal stochastic-control problem, providing ms1ghts into important
~-concepts-before they are devetoped in detail later. Stochastic dynamic pro-
gramming is the fundamental tootfor- solvmg this problem, and this algorithm.
~is developed in the remainder of the chapter. It will turn out to be inherently
a backward recursion in time, and the backward _‘Kovlmogorov equation useful
for reverse-time propagations is presented in Section 13.4. Dynamic program-
ming itself is then used to generate the optimal stechastic control funetion,
first in Section 13.5 assuming that perfect ‘knowledge of the entire state is
available from-the system-at each-sample time, and then in Section 13.6 under
the typically more realistic assumption that only’ mcomplete noise-corrupted
measurements are available,



2 13, DYNAMIC PROGRAMMING AND STOCHASTIC CONTROL

13.2 BASIC PROBLEM FORMULATION

Fundamentally, control problems of interest can be described by the block
diagram in Fig. 13.1. There is some dynamic system of interest, whose behavior
is to be affected by r applied control inputs u(z) in such a way that p specified
controlled variablés y (1) exhibit desirable characteristics. These characteristics
are prescribed, in part, as the controlled variables y (f) matching a desired
p-dimensional reference signal yq(t) as closely, quickly, and stably as possible,
either over time intervals (as in tracking a dynamic y4(t) or maintaining a
piecewise constant setpoint y4) or at specific time instants (as at some given
terminal time in a problem). Stability of the controlled system is an essential
requirement, after which additional performance measures can be considered.
However, the system responds not only to the control inputs, but also dynamics
disturbances n(t) from the environment, over which we typically cannot exert
‘any control. These usually cause the system to behave in an other-than-desired
fashion. In order to observe certain aspects of the actual system behavior,
sensor devices are constructed to output measurements z(t), which unfortunately
may not correspond directly to the controlled variables, and which generally
are not perfect due to measurement corruptions n,(t). These typically incomplete
and imperfect measurements are then provided as inputs to a controller, to
assist in its generation of appropriate controls for the dynamic system.

EXAMPLE 13.1 For instance, the dynamic system might be the internal environment of a
building, with controlled variables of temperature and humidity at various locations to be main-
tained at desired values through the control inputs to a furnace, air conditioner, and flow control
dampers in individual ducts. Environmental disturbances would include heat transfer with external
and internal sources and sinks, such as atmospheric conditions and human beings. Direct measure-
ments of temperature and humidity at all locations may not be available, and additional measure-
ments such as duct flow rates might be generated, and all such indications are subject to sensor
dynamics, biases, imprecision, readout quantization, and other errors.

The case of matching the controlled variables to desired values at a single time might be il
lustrated by an orbital rendezvous between two space vehicles. On the other hand, continuously

Dynamics disturbances n

Controlled variables v,
Control u Dynamic
Reference signal for system Measurements z
controlled variables y, Controller
{plus
interfaces)

Measurement corruptions n,,

FIG. 13,1 Controlled system configuration.



12,2  BASIC PROBLEM FORMULATION 3

matching y.(f) to a dynamic y,l(t) is displayed in the problem of tracking airborne targets with
communication antennas, cameras, or weapon sysiems. n

Let us consider the “dynamic system” block in Fig. 13.1 in more detail. The
first task in generating a controller for such a system is to develop a mathe-
matical model that adequately represents the important aspects of the actual
system behavior. Figure 13.2 presents a decomposition of the “dynamic system™
block assuming that an adequate model can be generated in the form of a
stochastic state model, with associated controlled variable and measurement
output relations expressed in terms of that state. As shown, the controller
outputs, u, command actuators to impact the continuous-time state dynamics,
which are also driven by disturbances, n. The sensors generate measurements
that are functions of that state, corruptions n,,, and possibly of the controls as
well. Similarly, the controlled variables are some function of the system state:
the dashed line around “controlled variable output function™ denotes the fact
that it does not necessarily correspond to any physical characteristic or hard-
ware, but simply a functional relationship.

A number of different types of measurements might be available. In the
trivial case, nothing is measured, so that the controller in Fig. 13.1 would be
an open-loop controller. However, in most cases of interest, there are enough
disturbances, parameter variations, modeling inadequacies, and other uncer-
tainties associated with the dynamic system that it is highly desirable to feed
back observed values of some quantities relating to actual system response.
One might conceive of a system structure in which all states could be measured
perfectly; although this is not typically possible in practice, such a structure
will be of use to gain insights into the properties of more physically realistic
feedback control systems. Most typically, there are fewer measuring devices
than states, and each of these sensors produces a signal as a nonlinear or linear
function of the states, corruptions, and in some cases, controls. Physical sen-
sors are often analog devices, so that continuous-time measurements from
continuous-time systems are physically realisticc. However, in most of the
applications of interest to us. the controller itself will be implemented as
software in a digital computer,.so we will concentrate on continuous-time state
descriptions with sampled-data measurements, compatible as inputs to the com-
puter. We will also consider continuous-time measurements, and discrete-time
measurements from systems described naturally only in discrete time, but the
sampled-data case will be emphasized. On the other hand. it will be of impor-
tance to consider the controlled variables not only at the sampling instants,
but throughout the entire interval of time of interest: reasonable behavior at
these discrete times is not sufficient to preclude highly oscillatory, highly
undesirable performance between sample times.

The noises n and n,, in Fig. 13.2 correspond to disturbances, corruptions,
and sources of error that can be physically observed. Since physical continuous-
time noises cannot truly be white, shaping filter models driven by fictitious
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