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Preface

TrIs book is written for chemistry students who wish to understand
how group theory is applied to chemical problems. Usually the major
obstacle a chemist finds with the subject of this book is the mathe-
matics which is involved; consequently, I have tried to spell out all
the relevant mathematics in some detail in appendices to each chapter.
The book can then be read either as an introduction, dealing with
general concepts (ignoring the appendices), or as a fairly comprehensive
description of the subject (including the appendices). The reader is
recommended to use the book first without the appendices and then,
having grasped the broad outlines, read it a second time with the
appendices. «

The subject material is suitable for a senior undergraduate course

or for a first-year graduate course and could be covered in 15 lectures
~ (without the appendices) or in 21 lectures (with the appendices).

The best advice about reading & book of this nature was probably
that given by George Chrystal in the preface to his book Algebra:

Every mathematical book that is worth reading must be read ‘‘backwards
and forwards”, if I may use the expression. I would modify Lagrange’s
advice a little and say, “Go on, but often return to strengthen your faith’.
When you come on a hard or dreary passage, pass it over, and come back
to it after you have seen its importance or found the need for it further on.

Finally, a word of encouragement to those who are frightened by
mathematics. The mathematics involved in actually applying, as
opposed to deriving, group theoretical formulae is quite trivial. It
involves little more than adding and multiplying. It is in fact possible
to make the applications, by filling in the necessary formulae in a
routine way, without even understanding where the formulae have
come from. I do not, however, advocate this practice.

London ‘ D. M. B.
November 1972
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symmetry element
symmetry operation
matrix representing R
element in the ith row, jth column of I(R)
transformation operator corresponding to R
matrix, elements are displayed between two pairs of vertical
lines
element in the ith row, jth column of 4
cofactor of 4, in det(4)
determinant of 4
trace of 4
conjugate complex of A
transpose of 4
adjoint of 4
inverse of 4
matrix
tth column of X
element in the ith row, jth column of X
identity matrix
null matrix
point group
order of a group (number of elements in a group;
number of elements in the ¢th class of a group
Kronecker delta (equals 0 if ¢ 5% j, equals 1 if ¢ = J)
Cartesian coordinates of a point
a representation of a point group
the uth representation of a point group
the matrix representing R in T'*
the matrix element in the ith row and jth column of D*(R)
the dimension of I'* or the order of D#(R)
the character of R in I’
the character of R in T'*
the projection operator X y*(R)*Op
I3

the projection operator > DY (R)*Opg
R

the number of times I'* occurs in T'

the number of classes in a group

the matrix representing R in the regular representation "8
any operation of the ¢th class of a point group

the jth operation of the mth class of a point group

symbol linking the irreducible components of a reducible
representation

symbol linking two representations in a direct product repre-
sentation
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vth energy level

a wavefunction associated with E,

a set of coordinates for a number of particles
a set of coordinates for a number of nuclei

a set of coordinates for a number of electrons



Fic. 1-2.1. (a) Cymothoe
aloatia; (b) primrose.
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Fr1a. 1-2.1. (c) ice crystal,



The octagonal ceiling in Ely Cathedral.
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1. Symmetry

1-1. Introductipn : : S

IN everyday language we use the word eymmet’y in one of two ways
and correspondingly the Oxford English Dictionary gives the following
two definitiong: - . o - -

(1) Mutual relation of the parts of something in respect of magnitude
and position; relative measurement and arrangement of parts; .
proportion. S 7 h

(2) Due or just proportion; harmony of parts with each other and

* the whole; fitting, regular, or balanced arrangement and relation
of parts or elements; the condition or quality of being well
proportioned or well balariced. v )

The first definition of the word has a more scientific ring to it than

~ the second, the second being related to some extent to the rather more
‘nebulous ¢oncept of beauty, for example John Bulwer wrote in 1650:
“True and native beauty consists in the just composure and symetrie
of the parts of the body’.} It is nonetlicless interesting that when we
igo deeper into the scientific meaning of symmetry we find that the
pnderlying mathematics involved has itself a beauty and elegance
" which could well be described by the second definition. .

In this chapter we will first lodk at symmetry as it ocours in everyday
life- and then consider its specific role in chemistry. We will end the
chapter by giving a historical sketch of the development of the mathe-

“matics which is used in making use of symmetry in chemistry.

1-2. Symmetry and sveryday lifs

The ubiquitous role of symmetry. in everyday life has been neatly
summarized by James Newman in the following way:

Symmetry establishes a ridiculous and wonderful cousinship between
objects, phenomena, and theories outwardly unrelated.: terrestial magnetism,
women’s veils, polarized light, natural selection, the theory. of groups,
invariants and transformations, the work habits of bees in the hive, the
structure of space, vase designs, quantum physics, scarabs, flower petals,

t This quotation comes from & book with the extraordinary title, Anthropometamor-
phosis: Man Transform'd; or the Artificial Changeling. Historically presented, in the mad
and cruel Gallantry, foolish Bravery, ridiculous Beauty, fllthy finenesse, and loathsome
Loveliness of most Nations, fashioning and altering their Bodies from the Mould ntended
by Nature. With a Vindication of the Regular Beauty and Honesty of Nature. And an,
Appendiz of the Pedigrea of the English Gallant. S : O




2 Symmhtry :

Fra. 1-2.2. (a) Ivy leaf; (b) iris. Dotted lines show planes of symmetry perpendicular
. to the page.

X-ray interference patterns, cell division in sea urchins, equilibrium positions
in crystals, Romanesque cathedrals, snowflakes, music, the theory of
relativity.} ,

In nature we find couritless examples of symmetry and in Fig. 1-2.1
we show some rather beautiful examples from the animal, vegetable,
and mineral kingdoms. Externally, most animals have bilateral
symmetry that is to say they contain a single plane of symmetry; such
a plane bisects every straight line joining a pair of corresponding points.
This is the same thing as saying that the plane divides the object into
two parts which are mirror images of each other. In Fig. 1-2.2 it is
seen that the ivy leaf and iris have, perpendicular to the plane of the
page, one and three planes of symmetry respectively. Actually, the
most frequent number of planes of symmetry in flowers is five. Anyone
interested in the predominance of bilateral symmetry in the animal
world, with its corollary of left and right handedness, is recommended
to read The ambidextrous universe.] In the iris we also notice that
there is a three-fold axis of symmetry, that is, if we rotate the flower
by 2#/3 radians about the axis perpendicular to the page and running
down the centre of the flower, then we cannot tell that it has been
moved. Similarly, the ice crystal in Fig. 1-2.1 has a six-fold axis of
symmetry: a 27/6 rotation leaves it apparently unmoved.

Because of its basic aesthetic appeal (regularity, pleasing pro-
portions, periodicity, harmonious arrangement) symmetry has, since
time immemorial, been used in art. Probably the first example a child
experiences of the beauty of symmetry is in playing with & kaleidoscope.
More erudite examples occur in: poetry, for example the abccba rhyming
sequence in many poems; architecture, for example the octagonal
ceiling in Ely Cathedral (see Fig. 1-2.3); music, perhaps the most astute
use of symmetry in art is a two part piece of music which is sometimes

t The world of mathematics, vol. 1, p. 669, Allen and Unwin, London (1960).
1 M. Gardner, The ambidextrous universe, Allen Lane, Penguin Press, London (1967).



