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Introduction

In various contexts of topology, algebraic geometry, and algebra (e.g.
group representations), one meets the following situation. One has two
contravariant functors K and A from a certain category to thc category
- of rings, and a natural transformatlon

p:K—»A

of contravariant functors. The Chern character bcing‘ the céntral exam-
ple, we call the homomorphisms

KX AX)
characters. Given f: X — Y, we dcnote the pull-back homomdrphisms by
FEKN-KX)  and fLAD AR

As functors to abelian groups, K and A4 may also bc covanant with
push-forward homomorphisms . ‘

[ KX+ K(Y)  and [y A~ A(Y)

Usually these maps do not commute with the character, but there is
an element 7, e A(X) such that the following diagram’is commutative: -

K(X)—Lf1, e, A(X)

f.l Jf‘- ]
KN ——s AY)

The map in the top line is p, multiplied by .

. When such commutativity holds, we say that- lllemann-Roch holds for
/. This type of formulation was first given by -Grothendieck, extending
the work of Hirzebruch to such a relative, functorial setting. - Since then

~
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several other theorems of this Riemann-Roch type have appeared. Un-
derlying most of these there is a basic structure having to do only with
elementary algebra, independent of the geometry. One purpose of this
monograph is to describe this algebra independently of any context, so
that it can serve axiomatically as the need arises.

A common feature of these Riemann-Roch theorems is that a given
morphism f is factored into p<i:

xLphy,

where i is a closed imbedding and p is a bundle projection. One con-
structs a deformation from i to the zero-section imbedding of X in the
normal bundle to X in P, suitably completed at infinity. General proce-
dures, which we axiomatize here, allow one to deduce a general
Riemann-Roch theorem from the elementary cases of imbeddings in and
projections from bundles; these cases are usually handled by direct calcu-
lation.

We illustrate the formalism by giving a complete elementary account
of Grothendieck’s Riemann-Roch, theorem in the context of schemes and
local complete intersection morphisms, as first presented in [SGA 6].
Here K(X) is the Grothendieck ring of locally free sheaves on X, and
A(X) is an associated graded group of K(X), with rational coefficients.
To prepare for this we include self-contained discussions of several im-
portant subjects from algebra and algebraic geometry, such as: A-rings,
Adams operations, y-filtrations, Chern classes, algebraic K-theory, regular
imbeddings and Koszul complexes, sheaves on projective bundles, and
local complete intersections.

Manin’s very useful notes [Man] were also written to give an accessi-
ble account of parts of [SGA 6], for the case of imbeddings of non-
singular varieties. Several developments since then allow us to give both
a more elementary and more complete treatment, including a complete
proof of the main theorem, as well as some conjectures left open in
[SGA 6]. Most important among these developments are: (a) an under-
standing of deformation to the normal bundle (cf. [J], [BFM 1], [V],
[BEM 2], [FM]); (b) the use of Castelnuovo-Mumford “regular” sheaves
on projective bundles (cf. [Q]). Among the resulting improvements we
mention:

(1) A proof that the y-filtration on K(X) is finer than the topological
filtration (V, §3).

(2) A Riemann-Roch theorem for the Adams operanons Y/ without
denominators (V, §6).

(3) An elementary construction of the push-forward fx for a projec-
tive local complete intersection morphism f (V, §4).
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Of these, (1) and (2) were conjectured in [SGA 6]. Other features
included are:

(4) An Intersection Formula for K-theory (VI §1).

(5) A direct proof, using a power-series caiculation of R. Howe, for
Grothendieck Riemann-Roch for bundle projections (II, §2).

(6) An equivalence between forms of Riemann-Roch for the Chern
character and Adams operators (111, §4).

Chapter "1 contains an elementary treatment of A-rings and Chern
classes; the excellent exposition of Atiyah and Tall [AT] can be referred
to for more on A-rings. We include a proof of a splitting principle for
abstract Chern classes; in our application in Chapter V, however, this
splitting principle will be evident, so the reader can skip this proof.

In Chapter II we develop the abstract Riemann-Roch formalism. The
main new feature here is an axiomatic formulation of the deformation to
the normal bundle: to prove a Riemann-Roch theorem for a given im-
bedding, it suffices to “deform” it to an “elementary imbedding” for
which one knows the theorem. We also axiomatize the dual case of an
“elementary projection”. ) .

Chapter IIT describes the y-filtration of Grothen{licck, and constructs
Chern classes in the associated graded ring. \

Chapter IV is a chapter of “intermediate algebraic geometry”, which
could supplement a text such as Hartshorne’s [H]. We establish the
basic category of algebraic geometry for which we shall prove the
Riemann-Roch formula, namely the category of regular morphisms. By
this we mean morphisms which can be factored into a local complete
intersection imbedding, and a projection from a projective bundle. We
include a short proof of Micali's theorem on regular sequences, and basic
facts about regular imbeddings, conormal sheaves, and blowing up.
Theorem 4.5 on the residual structure of a proper transform is, we be-
lieve, new. The culmination of this chapter is a simple construction of
the deformation to the normal bundle. Many of the results of Chapter
IV are not needed for the proof of Riemann-Roch proper, but are in-
cluded for completeness.

All these ideas come together in Chapter V, where the A-ring K(X) is
shown to satisfy the abstract properties of the first three chapters. The
Grothendieck Riemann-Roch theorem (including the version without
denominators), and analogous theorems for the Adams operators, follow
quickly. .

Chapter VI contains an Intersection Formula in the context of K-
theory which seems to be new in this generality, and which is analogous
to the “excess intersection formula™ of [FM], see also [F 2], Theorem
6.3. The formula is proved by using the general formalism of basic de-
formations, together with the geometric construction of the deformation
to the normal bundle. This follows a pattern similar to the proof for
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-Riemann-Roch itself, and provides another striking application of the
formalism of Chapter IL

"In Chapter VI, we also: discuss the relation of the Grothendieck group
of ‘locally free sheaves with the Grothendieck group of all coherent =
sheaves. We give an application to the calculation of an exact sequence
for K of a blow up of a regularly imbedded subscheme, relying on the
Intersection Formula. Finally, we discuss briefly and incompletely how
Riemann-Roch can be extended beyond the case of local complete inter-
sections. In addition, we sketch- several other contexts where the formal-
ism developed heré can be applied. It would take another book to give
a systematic treatment of these topics, including the relations between K-
theory, the Chow group and étale cohomology in a more schemy and
sheafy context than (F 2]. '

We have made our exposition self-contained from [H] for algebraic
geometry, [L] for general algebra, and the simpler parts of [Mat] for a
little more commutative algebra. Thus we have included proofs of ele-
mentary facts whenever necessary to achieve this.

-At least in first reading, the reader inferested only in a fast proof of
Riemann-Roch is advised to skim Chapters I, IV, and the first half of
Chapter V. More is included in these chapters than is strictly needed for
Riemann-Roch, with the hope that this important material will be more
accessible than its previous position in SGA and EGA permit. Those
interested primarily in the Riemann-Roch theorem should concentrate on
Chapters II, III, and V.

We have not discussed applications to the theory of group representa-
tions. For these, we refer especially to the articles by Atiyah-Tall, Evens,
Kahn, Knopfmacher, Thomas, as well as Grothendieck’s general discus-
-sion as listed in the Bibliography. On the other hand, the applications
to group representations are not independent of those to algebraic ge-
omeétry. Even though the K-groups can be defined in terms of modules,
one can analyze them .via considerations of topology, classifying spaces,
and algebraic geometry, so there is a considerable amount of feedback.

We also do not discuss applications to topology. We refer to the
lectures by Atiyah [At] and Bott [Bo] for some K-theory like that of
Chapters I and III in a topological context, stopping short of Riemann-
Roch theorems, however. '

‘We hope that the simpler logical structure of the proofs which
- emerges in this treatise will make it easier to understand these results,
and to find new situations to which this “Riemann-Roch algebra”
applies.
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CHAPTER I -
A-Rings and Chern Classes

This chapter. describes first the basic ring structure of the objects to be
encountered later in a more geometric context. The algebra involved is
elementary and self-contained. We have axiomatized certain notions
which originally arose in the theory of vector bundies. Actually we work
‘with two rings, one-of them- usually graded. We also develop the formal-
ism of Hirzebruch polynomials, which belongs to the basic theory of
symmetric functions. We have preserved original names like Chern
classes, Todd character, etc., although the algebra involved here deals
only with a pair of rings and some elementary formal manipulation of
‘power series, independently of the geometry from which they came

We now make additional comments concerning the way these notions
arise in applications to algebraic geometry and group representations.
- These are not necessary for a logical understanding of the chapter. How-
ever, we may have at least two categories of readers: those who know
some Riemann-Roch theory previously and are principally interested in a
quick proof of Grothendieck Riemann-Roch; and those who have more
limited knowledge in this direction and are thus directly interested in the
more elementary material. Our additional comments are addressed to
this second category.

A fundamental aim of algebraic geometry is' to study divisor classes
or equivalently isomorphism classes of line bundles. More generally, one
wishes to study vector bundles, with certain equivalence relations. The
Grothendieck relations are those which to each short exact sequence

O0-E->E-SE -0
gives the relation

(E]=(E]+[E"]
The group of isomorbhism classes of vector bundles over a space X
modulo these relations is called the Grothendieck group K(X). It has

both covariant and contravariant functorial properties, although the co- '
variant ones are much more subtle.
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The addition is induced by the direct sum, and there is also a multi-
plication induced by the tensor product, so that K(X) is in fact a ring.
The class of the trivial line bundle is the unit element.

This ring has various structures. First, it has an augmentation, which
to E associates its rank ¢(E). Then ¢ extends to an augmentation on
K(X) (algebra homomorphism into Z). The vector bundles themselves
generate a semigroup under addition. In §1, we axiomatize this structure
by defining “positive elements” whose properties are modelled on those
of vector bundles. The elements of augmentation 1 correspond to line
bundles, and are thus called line elements.

Second, the ring K(X) has another operation induced by the alternat-
ing product. To each integer i = 0 we have A'E, and therefore its class
[A'E] denoted by AY(E). A standard elementary formula for the direct
sum E = E' @ E” of free modules reads

A(E) = é—) (NE' @ A" E").
i=0

Passing to the classes in the K-group, we get the relation

x4 y) = XA

i=0
But this relation amounts to saying that the map
- x>y Ax)ff = A(x) by definition

is a homomorphism from the additive group of K(X) to the multiplica-
tive group of power series with constant term equal to 1. This gives rise
to the notion of A-ring. A great deal of the formalism of Riemann-Roch
algebra can be developed for the general A-rings. The reader should read
simultaneously the beginning of Chapter I and the beginning of Chapter

'V to see the parallelism between the abstract algebra and the geometric
construction giving rise to this algebra.

In the theory of group representations, one may start with the cate-
gory of finite-dimensional vector spaces over a field &, and a representa-
tion of a (finite) group G on ‘he space. Then again we have direct sums,
tensor products of (G, k)-spaces and the analogous definition of A-ring,
formed by the isomorphism classes of such spaces modulo the relations
in the Grothendieck group. The positive elements are just the classes of
such spaces as distinguished from the group generated by them in the
Grothendieck group. ‘

In §2 we shall discuss a particular extension of a A-ring, which gives
an axiomatization for the extension obtained from a projective bundle.
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The corresponding geometric case is discussed in Chapter V, Theorem
2.3 and Corollary 2.4. Since the existence of the extension is proved in a
self-contained way by geometric means in Chapter V, the reader inter-
ested only in the geometric application can omit the existence proof of
Theorem 2.1 in this chapter. The corresponding graded extension will be
"~ constructed in §3.

I §1. A-Rings with Positive Structure

Let K be a commutative ring. For each integer i = 0 suppose given a
mapping
AMK->K

such that A°(x) = 1, 2'(x) = x for all xe K, and if we put
Ax) =Y M)

then the map
. x> 4,(x)

is a homomorphism. This condition is equivalent with the conditions

k

(L.1) Mx+y) = ¥ A0»(y)

i=0

for all positive integers k. A ring with such a family of maps A’ is called
a A-ring.

In addition, we suppose that the A-ring has what we shall call a posi-
tive structure. By this we mean:

A surjective ring homomorphism

e K->Z

called the augmentation.

A subset E of the additive group of K called the set of positive ele-
ments such that E together with 0 form a semigroup, satisfying the con-
ditions '

Z* cE, EE =E, K=E-E

so every element of K is the differencélpf two elements of E; furthermore
for ee E we have g(e) > 0, and if &(e) =r then

A(e)=0fori>r and  A'(e)isaunitin K.
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We define L to be the subset of eléments u€ E such that e(u) = 1.
Since A'u = u, it follows that L is a subgroup of the units K*. \Elements
of L will be called line elements.

- An extension K’ of a J-ring K is a A-ring K’ contaiing K with 41 and
augmentation extending that of K, and with positive elements E’ contain-
ing E.

- We shall be concerned with a class R of A-rings satisfying, in addition
to the preceding conditions, the ’

Splitting Property. For any K € & and positive element e in K, there is
an extension K’ of K in R such that e splits in K', ie.

e=u +--++u,,
with u; line elements in K'.

It follows by induction that any finite set of positive elements can be
simultaneously split in a suitable extension. The splitting property will
allow us to deduce general formulas from the simple case of line ele-
ments. For example, the property that +i(e) =0 for e positive and
i > r = g(e) follows from the fact that A‘(u) w0 for all line elements u and
i>1. ’

More generally, for u e L we have directly {{om the assumptions

A(u) =1+ ut,

and hence if e is split as above, then
Ae)= [T +ut)
i=t
=14 Y si(uy,... )0
i=1

where s; is the i-th symmetric funclon. Since the coefficients Ai(e) are
given a priori as elements of the A-ring K, we see that the value of the
symmetric function s,(u,,...,u4,) is independent of the splitting of e as a -
sum of line elements in K'.

For example, one sees from this formula that

(12) e(ile) = (8(:)).

In other words, if Z is given a A-ring structure by i'(n) = (':), then the

augmentation ¢ is a homomorphism of A-rings.
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Formulas for Zg(x- y) and 2*(1%(x)) can best be expressed in terms of
certain universal ‘polynomials P, and P, ; as follows. Take independent
variables U,,...,U, and V,,...,V,. Let X, be the i-th elementary sym-
metric polynonual in U,,... U,,,, and Y; the i-th elementary symmetric
polynomial in V,,...,V,. For m2k, n2>k, let.

PXy . X, Yy, WEZIX,, .. X, Yy, .. L Y]

be the polynomial of weight k in the variables X ; and in the variables Y;
(where X; and Y, are assigned weight i), determined by the identity

(A) Y PUXy X Yy S YOT =] + UY,T).
ij .

k20

By setting some of the variables U; or V; equal to zero for i, j > k, one
sees that the P, are independent of the choice of m, n = k. Similarly
define

Pe (X1, ... . Xy)eZ[X,,... . X,;]
of weight kj, by the identity for m 2 kj:

SR S
(B) Y P Xy X)T= [ 0+U,+-UT.

k20 ir< - <iy

Now if x = Z u, y= Z vj, with u;, v; line clcments then

=t = Rt
Ax - y) = [T (1 + w;).
From (A) this can be written
€3 AMx - y) = PAl(x), o A5 x), ANy, - - A5())
For example, if x is a line element, then

Mx-y)y=xt-2y,  or  A(xy) = i)
Similarly, if x = Y u,, then 24(x) = Z u,l “e Uy, SO
. i=1

AAxy= 1 (0 +u,---uyp.
- <y

i1 <

By (B) this can be written

(14 () = Py, (A1(x), . .. AM(x)).
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~ The identities (1.1)-(1.4) say that our A-rings are what Grothendieck
calls special J-rings ([SGA 6], Exp. 0). This may be reinterpreted as
follows. Given a commutative ring A, define A[[T]]* = TA[[T]], and
let

NA) =1+ A[[T]]*

be the set of power series in A with constant term 1. Define an addition
in A(A) by the multiplication of power series; a product - in A(A4) by the

. formula

(1+Yart)y A +Ybt)y=1+Y Play,....a,b,,....0)5
and A-operations by
21+ Y at)y =143 Py (ay,... .ap)t

One verifies easily that these definitions make A(A4) into a special
A-ring (cf. (AT] for a readable account). For any A-ring K,

A:K = AK)

is7an Additive-homomporpfsm; K is special precisely when 4, is a homo-
mprphism Pl A-Tingsgk N that identities (1.1)-(1.4) hold for all elements
oKX, not only posiiTve g@iéments.

. Kemigrk. An ¢ t x 1n a A-ring K is said to have A-dimension = n
if )f(M n, and A"(x) # 0. The ring K is called Ai-finite-
dimensional if every element is a difference of two elements of finite A-
dimension. Since positive elements have finite dimension, our axioms
imply that our A-rings are all finite dimensional. Conversely, given a A-
finite-dimensional special A-ring K, one can define E to be the elements
of A-finite dimension. If one assumes that all one-dimensional elements
are units, then E defines a positive structure in our sense.

Let Y a,t' be a power series in K[[t]] with a, = 1. The coefficients of
the inverse series ’

Z bit' = (Z a;t') ™!

can be determined recursively from the coefficients a; by the relation

ab, ;=0 for k>0.

M~

i=0
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For e ¢ E we define the series
ole)=4_fe) ' = Y die)t.
i=0

Then for each i we get a map ¢':K — K.

If h is a homomorphism of K into some ring and ¢(t)e K[[t]] is a
power series, then we let h(¢(t)) be the power series obtained by apply-
ing h to all the coefficients of ¢(t). In particular, we have

(o eNe(h- () = 1.

Lemma 1.1. Let ¢(e) = r+ 1. Then

e(A_@)=Q0—ty*" and e(afe) = Tl

So explicitly in terms of the coefficients,

e(ii(e)) = <r t 1) and  e(d’ ig@

Proof. Splitting e into Y u;, with e(u) = 1,
Ae) =TT +un),
from which the formula for £(4_(e)) is clear. SiMwgg, is the jfrse of

4_,, the formuia for ¢(o(e)) follows. The last formula TOMOWs trom the

identity
UNE BN Y LA P AW
(1-—!)’+l_z( ] )t‘

I §2. An Elementary Extension of A-Rings

Given a A-ring K and a positive element e¢ in K we construct a ring
extension K, of K as follows. Set e(e) =7 + 1,

r+1

pT) = Y (—1) AT "7,
i=0

and let
K, = K[T}/(p.T)) = K[/],
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where ¢/ is the image of T mod p(T); we call / the canonical generator.
We have the defining relation '

r+t

Z (—l)ill‘(e){”'l-i ='0’
i=0

In particular, for k 2 r + 1, multiplying by powers of # and using A™(e) =
if m>r-+ 1, we get the relations

k

Y (—1)ii(e)*i = 0.

These relations translate into the single power series relation

(3 (= ) HNE i) = X (}:( fert ‘)z*

k=0\i=0

Theorem 2.1. There is a unique A-ring structure on K,, extending that

on K, apd-setig[ying

iAy=1+{(t.

#Proof. First dehne a ng structure on the polynomial ring K[T],
s@h that &(T)=1 apd Z(T) =T, Z(T)=0 for i >1. From the fact
thigt K 1s a special /-nnggl follows readrly that K[T] is also a special A-
nu@& To show that this &;ctermmes a A-ring structure on K,, it must be
verified, that the ideal, T = (p,(T)) is preserved by the A-operations. Set

j=r+Ldhen
- 1)’Pe(T) = 11(3 - T)

Using the rdentlty (1.3) for products “one sees that it suffices to verify
that :

e —Tyel =(Me—T))
for all k 2 1. From the identity' | ' "/
he-T)=( +<l‘(e)t + -+ Me))-(1 + Tt)“
it folluws tltat |

Me—-T)= + T“‘J.f.’(ej -TNel

for all k2 j. Since AX(4/(x)) = P, ;(A'(x),...,A"(x)), it suffices to verify



