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PREFACE

The second edition of this book bears little resemblance to its predecessor.
The extensive changes were dictated, for the most part, by the continuing
evolution of active devices. To reflect current practices, only solid-state
devices are covered. The content has also been altered to comply with
numerous requests for more quantitative information.

The reader is assumed to have completed courses in electric-circuit
theory and bipolar transistor physics and circuits. The mathematical pre-
requisites are a working knowledge of algebra and trigonometry. Elemen-
tary forms of the differential and integral calculus are used occasionally
where such use serves to enhance understanding. Thus the book should be
readily understood by anyone engaged in a meaningful electronics program
at the college level. It should also meet the requirements of graduate engi-
neers, particularly those concerned with applications, who have not yet
acquired suitable skills in this area.

Admittedly, some of the quantitative discussions are rather lengthy.
In every such case, however, a careful step-by-step approach is used to pro-
vide sound insight into the operation of the device or circuit under inves-
tigation. A great deal of thought was given to the possibility of showing end
equations only with detailed analyses contained in appendices. But appen-
dices are often overlooked, and the resulting loss could far outweigh any
advantages that may result from this approach.

The book is divided into two parts: (a) the steady-state and transient
switching characteristics of selected devices and (b) switching and pulse
circuits.

Devices included in Part 1 are the junction, avalanche, tunnel, back-
ward, and semiconductor-metal junction diodes, the junction and insulated
gate field-effect transistors, various thyristors, and the unijunction transistor.
A separate chapter is devoted to integrated circuits. Attention is concentrated
on the physical behavior of the devices. With this background, the reader
should experience little difficulty in adapting any of the devices to any desired
application. Without such knowledge, the capabilities of the industrial
worker are definitely limited.
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Part 2 is concerned with linear and nonlinear waveshaping, various
amplifiers employed in pulse-type circuits, multivibrators, blocking oscil-
lators, voltage comparators, voltage and current time-base generators,
transmission gates, and basic counting circuits.

Throughout, the transistor is considered to be the prime active device.
In Part 2 the discussion of transistor circuits is followed immediately by an
investigation of counterpart circuits that use other devices covered in Part 1.
This integrated approach should prove beneficial to the reader, for the simi-
larities and differences between the various configurations is made apparent
without delay.

Exercises are included at the end of each chapter and an answer book
for all problems involving computation is available to qualified instructors
upon written request to the publisher.

I am pleased to acknowledge my indebtedness to the many manu-
facturers who supplied information in the form of device characteristics and
technical papers, the publishers who permitted excerpts from previously
copyrighted publications, and to the reviewers whose comments led to
numerous improvements in the book. An effort has been made to acknowl-
edge all such assistance by appropriate notation in the references appearing
at the end of each chapter.

As always, my wife Rita was ever ready to spend countless hours in
helping with preparation of the manuscript, and it is to her that this book
is dedicated.

John M. Doyle

Amesbury, Mass.
December, 1971
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1

Introduction

Pulse circuits are defined as those circuits required for the generation and
control of precisely timed waveforms. They differ widely from those used in
radio communications equipment, in which the waveform of the operating
voltage is usually sinusoidal or a simple combination of sinusoidal waves.
Some pulse circuits are used to develop square, sawtooth, trapezoidal, or
peaked waves of voltage, which are required in indicating, timing, and
modulating circuits of television, radar equipinent, and so forth. The circuit-
operating conditions in most cases range from full on to full off and do not
fall into the simple classifications of class A, B, and C operation. The circuits,
therefore, are named for the function they perform rather than for their type
of operation.

1.1 Historical Developments

Pulses, in the form of dots and dashes, were used to convey intelligence by
wire in the earliest days of electrical communication. Marconi used short
and long pulses in his “wireless” to form the modulation envelope for radio-
frequency energy.

The advent of the triode vacuum tube made possible modern radio
communication and the transmission of intelligence by means of an ampli-
tude-modulated carrier. In this scheme the prime-signal source is a sinusoidal-
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2 Introduction

signal generator. In modern, technology many electronic systems have been
developed thgt require the use of pulses as the prime-signal source.

1.2 Typical Pulse Applications

Pulses are used in radar, which is an electronic system that detects the pres-
ence, range, and direction of objects. The block diagram of a typical radar
system is shown in Fig. 1-1. It consists of a timer, modulator, transmitter,
transmit-receive (TR) switch, antenna, receiver, indicator, and power

supply.

1 +

Modulator Transmitter ]l'

Transm tted pulse

Timer Power T—R |
supply swifch - Antenna

-

oL = s
Indico?or@ Receiver - Echo

Figure 1-1. Block diagram of a radar set.

The timer synchronizes the indicator and transmitter circuits. At
regular intervals it produces a pulse that causes the sweep (horizontal move-
ment of the scanning spot) to start in the indicator. At the same instant, or
after a precisely predetermined time, the timer produces a signal that is also
applied to the modulator.

When the modulator receives the synchronizing timing pulse, it de-
velops a high-voltage, high-power pulse that turns the transmitter on for a
short time interval.

The transmitter is a very high frequency (vhf), high-power generator
of radio-frequency (rf) energy. It produces a radio wave of constant frequency
and amplitude during the short time during which it is turned on by the
modulator.

The TR switch is operated electrically, and it effectively disconnects
the antenna from the receiver during the production of the transmitter pulse
and connects it to the transmitter. During the remainder of the operating
period, the TR switch connects the antenna to the receiver.

The antenna acts as a radiator of the transmitter-produced energy
when the transmitter is pulsed. A small portion of the radio wave transmitted



Sec. 1.2 Typical Pulse Applications 3

from the radar set travels to the object (rarger) and is reflected as shown in
Fig. 1-1. The reflected waves, called echoes, are picked up by the antenna
and conveyed to the receiver. The antenna is designed to be directive for both
transmission and reception so that the bearing (direction) as well as the
range (distance) of the target may be determined.

The receiver amplifies the echoes and provides video pulses, called
pips, of sufficient amplitude to produce visual indications on the indicator.

The indicator can be regarded as an electrical stop watch that measures
precisely the small time interval required for the transmitter pulses to travel
to the target and for the echoes to return. Because the speed of propagation
of radio waves is known with great accuracy, the range can be determined as
accurately as the time interval can be measured.

Pulses are also used in radio relemetering. Here certain 'variables,
such as changes in temperature of the outer casing of a rocket, are sensed and
measured in flight. This information is then transmitted to a ground station
where permanent records are made for analysis by engineers.

A simplified explanation of telemetering can be given with the help of
Fig. 1-2. The output signal of a pickup device, termed a transducer, is shown
as a sinusoidal waveform. This signal is applied to several contacts on the

Stationary plate of
mechanical switch

Sinusoidal
output
waveform

Tronsducer = To comocts

t—

Contacts

Figure 1-2. Sampling the output of a transducer.

stationary plate of a mechanical switch. A revolving brush then passes over
each contact and samples the transducer output. Assuming that each contact
is of uniform area and that-the brush is revolving at a constant speed, the
switch output is a series of pulses having uniform width, and the amplitude
of each successive pulse is proportional to the corresponding amplitude of the
signal wave, as shown in Fig. 1-3. The output of the switch is now pulse-
amplitude modulated, abbreviated PAM. It is apparent that the successive
pulses reproduce the signal wave rather faithfully. If the number of samples
per second exceeds twice the highest frequency contained in the signal wave,
the original signal can be reconstructed from the succession of pulses.

The PAM signal is next used to modulate an FM transmitter whose
output is radiated by means of a suitable antenna.
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At the ground station the signal is picked up by a special type of
antenna and applied to the input terminals of a highly sensitive receiver. The
receiver amplifies the weak signal and separates the FM carrier signal from
the PAM signal, The PAM output signal of the receiver is then applied to a
detector, whose instantaneous output voltage is proportional to the instanta-
neous amplitude of the input voltage. This voltage is used to operate a

. mechanical reproducer that reconstructs an essentially faithful reproduction
of the signal produced ongmally by the pickup transducer.

A reexamination of Fig. 1-3 shows considerable unallocated time
between successive pulses. For example, the time required for each pulse may
be 10 usec and the elapsed time between pulses may be 100 ysec.

Use of this unallocated time introduces the possibility of time-division
multiplexing, in which successive intervals of time are assifned to different
signal (information) channels. In practice, this is exactly what is done in
radio telemetering. One transducer may be used to record, say, temperature
variations; separate transducers may measure other variables, such as
atmospheric pressure and cosmic radiation. The output signal of each trans-
ducer is applied to successive contacts on the mechanical switch. This
operation is shown in Fig: 1-4, The amplitudes of the successive output pulses
from the switch are now proportional to the corresponding amplitudes of
each signal wave.

At the output of the ‘ground-station receiver, suitable filters are re-
quired to separate the various transducer signals from the composite PAM
signal, but this filtéring represents no great technical difficulty. Once sepa-
rated, the individual signals are handled in the manner'described previously.



