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Preface

Statistics is the accepted body of methods for summarizing or describing data
and drawing conclusions from the summary measures. Everyone who has
data to summarize thus needs some knowledge of statistics. The first step in
gaining that knowledge is to master the professional jargon. This dictionary
is geared to offer more than the usual string of isolated and independent
definitions: it provides also the context, applications , and related terminology.

The intended audience falls into five groups with rather different needs:
(1) professional statisticians who need to recall a definition, (2) scientists in
disciplines other than statistics who need to know the acceptable methods of
summarizing data, (3) students of statistics who need to broaden their knowl-
edge of their subject matter and make constant reference to it, (4) managers
who will be reading statistical reports written by their employees, and
(5) journalists who need to interpret government or scientific reports and
transmit the information to the public.

In every case the word or phrase to be defined should be looked up in the
alphabetical index, which will refer the reader to a page in the text. The
professional statistician may then find the word and its definition and be
finished. Other readers are no doubt looking for more information—for back-
ground, related words, and an understanding of how this topic fits into the
scheme of things. For this purpose the dictionary has been arranged topically
rather than alphabetically, and in connected discourse rather than in paragraphs
related only by the first few letters of one word. Depending on how much
knowledge of the subject is desired, the reader will want to go back a few
paragraphs or to the beginning of the chapter and read further. I have even
been assured by some professors of statistics that students of statistics will
benefit by reading the dictionary from cover to cover. That will give some
idea of the “big picture” and help substitute for gaps in educational training.

vil



sy of Statistics

The first chapter. Summarizing Data, has been written particularly for those
who have no background in statistics and may be worth their while as an
introduction to the book. ’

In trying to meet the needs of so many, 1 have tried to stay one level below
what a theoretical statistician would like to see. I doing so. 1 run the risk
of falling a little short of absolute rigor, but I have tried not to sacrifice the
things that matter in applications. I hope this effort will be worthwhile for
the manager and journalist. The question of what to include and what to leave
out has ariscn many times. There are many specialtics in statistics and I have
decided to omit terms which are peculiar to a small audience. On the other
hand, | have included a number of generul but rarely used terms for the sake
of completeness. and 1 can only hope that the reader wili bear with me on
this matter. There are terms whose use is discouraged and areas where one
needs to take great care to avoid misstatements. | have tried to point these
out t the reader.

The nonmathematical reader need not be discouraged by the mathematical
symbuols which are used frequently. They are really a rather simple shorthand.

The symbols appearing most often are the following: (1) [%f(x)dx which is read
“the integral of f{v) from « to b and means the area under the curve flx) and
between the values of v = a and x = b on the x-axis. if the limits are infinite,

i.e. if wis -% and b is x, the area is taken over the entire x-axis (2) the
N

Greek letter X means “the sum of” so that >, x, means “the sum of the x,

i=1
fromi = ltwi = N",ile x + x, + -+ + x, Forbrevity, the subscripts
are sometimes omitted when the meaning is clear. Thus the symbol Zx means
.. where i goes from 1 to N unless otherwise indicated. Products are denoted
with a Il in place of X. The symbol x! means the product of the positive
integers from tox. ie.. 8! = 1 X 2 X 3 x 4 X 5. The binomial symbol

[:/:l is equal 10 N/(N — n)!n! and is the number of ways of selecting a

sample of n items from a set of N items (4) the symbol dfidx (read “the
derivative of f with respect to x7) refers to the slope of the line tangent to the
curve flx) at a point v. (For a given change in x, the slope of a line is the
change in v divided by the change in x). If fis a function of more than one
variable, df/dx is the derivative of f with respect to x while the other variables
are held constant (it is read “the partial of f with respect to x7).

I have followed the convention of using capital letters for random variables
and the corresponding lower case letters for their realizations (or for non-
random variables). Greek letters denote parameters of a distribution (for a
particular distribution, a parameter is a constant. but it varies from one dis-
tribution to another). Parameters are usually unknown constants which have
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to be estimated, and their estimates are denoted by the same Greek letter with
a carat (") or a tilde (") placéd above it. A tilde in the middle of the line,
however, is read “is distributed as”. The symbol E(X) is read “the expected
value of X and is an average of the values taken on by the random variable
X. The symbol /x is the positive square root of x and is equivalent to x'*,
The use of exp(x) for ¢' is purely for typesetting convenience. The natural
logarithm of x (log base e, where ¢ is a constant approximately equal to 2.718)
is denoted by /n(x).

This dictionary is by no means a solo production. At one time or another
[ pressed nearly everyone in the statistics group at Los Alamos into providing
some definitions or reading those I had written. Consultants to the group
received the same treatment. Dennis Cook gencrously wrote the major part
of the chapter on regression. while George Milliken wrote much of the chapter
on Experimental Design. I benefitted especially from a critical review of the
first draft by Jay Conover. Ben Duran followed with many valuable sugges-
tions. My good friend S. Juan lent constant support and encouragement. Kay
Grady and Corinne Ortiz very competently typed the manuscript and endured
revision after revision without complaint. Finally, | am most grateful to my
wife who took care of many other duties while I wrote.

Gary Tietjen
Los Alamos
New Mexico
May, 1986
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Summarizing Data

This chapter is intended to introduce the basic ideas of statistics to the
layman. Statistics is the accepted method of summarizing or describing data
and then drawing inferences from the summary measures. Suppose, for exam-
ple, that a company has made a process change in manufacturing its light
bulbs and hopes that the new bulb (Type B) will have a longer lifetime than
the old (Type A). Having experimented previously, the company knows that
even though the bulbs are treated identically they will vary considerably (60
to 90 hours) in the length of time they will last. That variability, which is a
property of almost all manufactured products, is called inherent variability.
Since we cannot predict how long a bulb will bum, we describe its lifetime
as a random variable. The company does know that the largest fraction of
the bulbs burn about 75 hours, that those with lives of 70 and 80 hours are
about equally frequent (but less common than lifetimes of 75 hours), and that
those with lives of 65 and 85 hours are even less frequent.

For bulb A we can think of all the past production as a population of bulbs
with lifetimes that we denote by x. For bulb B the population is mostly
conceptual; it consists of bulbs that will be produced by the new process. We
let y denote the lifetime of a bulb of Type B.

1



2 Topical Dictionary of Statistics

The aim of management ia this instance is to evaluate the performance of
the Type B bulbs and to compare it with that of Type A. The first thing to
do is to picture the situation. It is obviously neither possible nor desirable to
test the lifetimes of all the bulbs. Fortunately the company has tested 100
Type A bulbs in the past. The readings range from 60 hours to nearly 100 hours
burning time. That portion of the population will ordinarily be called a sample,
but the word implies that there are some restrictions in the way the bulbs to
be tested are selected. When there are no restrictions, we shall refer to the
portion as a batch. (In this chapter we are adopting some of the terminology
"coined recently by John Tukey for the set of techniques that he calls Explor-
atory Data Analysis [EDA). His terminology, while not yet standard. has
come into rather wide usage. Exploratory data analysis is a first look—a quick
glance-—at the data and is usually followed by a confirmatory data analysis,
using the techniques of classical statistics.)

A time-honored method of graphically portraying the data in the batch of
100 units is to construct a histogram of the data. This is done by dividing
the interval of possible lifetimes (60 to 100 hours) into k subintervals of equal
width called class intervals. There is no prescribed way of deciding how
inany intervals to use, but perhaps 10 will do here: 60-65, 65-70, . . . We
then count the number of units (n;, n,, . . . ) that fall into each interval. We
next draw a series of adjacent rectangles, using the class intervals as widths
and the frequencies n,, n,, . . ., n, as heights. The histogram shows the
distribution of frequencies of the lifetimes. The graph can be improved some-
what by using relative frequencies (n,/T, nyT, . . . nJT, where T = n, +
n, + ...+ n) as the heights of the rectangles. Much can be inferred from
the histogram. We can decide, for example, what percentage of the bulbs in
the sample have lifetimes of less than 70 hours. what percentage burn between
80 and 90 hours, etc. If we took larger and larger samples, we could make
the class intervals narrower and narrower until the tops approached a smooth,
continuous curve. If such a curve were drawn across the midpoints of the
tops of the rectangles, it would represent the frequency distribution or prob-

ability density function (pdf) for the population. We see that the relative
" frequencigs sum to 1; hence it is not hard to believe that the area under the
frequency distribution is 1. Further, the area under the curve and within an
interval (a,b) of lifetimes is approximately the relative frequency of lifetimes
within the interval. The area between a and b is, in fact, the limiting value
of the relative frequency and is called the probability that the lifetime is
between a and b. We thus see that a random variable has a disiribution of
probabilities associated with it.

The EDA version of a histogram may be quicker to construct and is called
a stem-and-leaf plot. It will be lying on its side. The stems replace class
intervals and in this case would be the first digit of the lifetime. The second
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digit constitutes the leaves. By tallying the leaves to the right of their stem
as we come to them in the data set, we get the stem and leaf plot of the data
(provided that we give the same width to each leaf). If we decide.that we do
not have enough stems, a period following the stem can represent a stem with
leaves 04, while an asterisk following the stem accompanies leaves 5-9.
Three-digit numbers can be represented by dropping the last digit or by using
2-digit stemns. )

There is a way of abbreviating a histogram even further. Let us first rank
the n data points in ascending order so that the smallest point has rank 1, the
second-smallest rank 2, and'so on to the largest, which has rank n. Now we
rank the data in descending order so that the smallest point has rank n and
the largest rank 1. The deprh of a data point is the minimum of the 2 ranks
the data point can have. The largest and smallest points, called extremes,
have depth 1. The middle observation or median hés depth (I + n)/2. When
the depth is not an integer, we average the 2 data points with depths on either
side of the indicated 1. Thus, if there is an even number of points, the median
is the average of the 2 middle points. The hinges are halfway between the
extremes and the median; they are the points with depth (1+m)/2, where m
is the integer part of the depth of the mcdian. Similarly the eighths are points
with depth (1 + h)/2, where h is the integer part of the depth of the hinges.

A rather neat summary of the histogram is made by plotting the extremes,
hinges, and median on a vertical line. A “long, thinnish box” (about ¥% inch
wide) is drawn so that the hinges are at the top and bottom of the box. A
horizontal line through the box marks the location of the median. A vertical
line connects the extremes with the hinges. That 5-point summary is called
a box-and-whisker plot. The middle 50 percent of the data lie inside the box;
the lower 25 percent of the data are in the lower whisker and the upper
25 percent in the upper whisker. The lower half of the data are below the
median and the other half above it.

Another useful plot, very similar to & box-and-whisker plot, is a schematic
plot. The H-spread is the distance between the hinges. A step is 1.5 times
that distance. An inner fence is 1 step beyond the hinges. and an outer fence
is 2 steps beyond the hinges. The data point closest to the inner fence but
inside of it is an adjacent point. Quiside values are those between the inner
and outer fences, while those beyond the outer fence are far out points. The
box for the schematic plot is constructed as before, but the whiskers are
dashed and extended only to the adjacent values and end with a short dashed
horizontal line. The outside values are labeled separately and the far out
values labeled “impressively.” ’

Let us return to our example. A batch of bulbs is taken from the production
line and tested. Either box-and-whisker plots or schematic plots are con-
structed so that the plots for the 2 types of bulbs parallel each other. A visual
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comparison of the 2 sets of data can now be made. Symmetry of the histogram
(with the median near the middle of the box and the whiskers of about equal
length) is a good framework for comparing the medians. More important than
symmetry is an approximate equality in spread, as shown by box length and
whisker length. If either of those conditions is violated seriously, we will
want to re-express the data (transform the data is classical terminology) before
comparing the medians. The schematic plot is preferred to the box-and-
whisker plot if there are several outside or far out points. If the 2 distributions
are moderately symmetrical and close in spread as judged by the eye, the
medians will teu about how far apart the average lifetimes will be. Sometimes
the trinfeans (sum of hinges plus twice the median, all divided by 4) are used
as an estimate of the “center” of the distribution.

When strong asymmetry/inequality of spread is present, the re-expression
is ordinarily done by transforming the data to logs of the data. If that does
not work, a square root transformation is made. Negative reciprocals are the
third choice. All of those choices preserve the ranks and depths of the data
points. Tukey has suggested a ladder of transformations . . . X°, X*, X, log
X, T X, —1/X%, —1X%, . .., where the transformation most likely to help
is chosen by plotting the log H-spre#l (y) against the log of the median (x)
for the several populations being compared. If the slope of a line drawn by
eye is close to 12, the square root should help. If the slope is somewhat larger
than Y2, logarithms will be more likely to be useful. In other words, choose
the re-expression more apt to result in a horizontal line through the transformed
points.

~ We now give some thought to a confirmatory or classical approach, which
might follow the quick EDA look at the data. The EDA approach should
have given us a rather good “feel” of the data and any unusual structure that
might be present. From that we may have reached some preliminary conclu-
sions. At other times the differences between the 2 bulbs may have been so
obvious that no statistics seem to be needed. Regardless, the investigator
needs numbers to put in the report. Just how large are the differences between
medians? How significant are the results? That is an area for classical statistics.

A great many measurements in nature are approximately normally dis-
tributed (for a good reason to be discussed later). That means that the prob-
ability density function (the frequency distribution) is symmetrical and bell-
shaped. That distribution is so familiar and so ubiquitous that in many cases
the statistician just assumes that the measurements are normal (in most ¢ases
it does not matter too much if that assumption is slightly off base). In situations
where the assumption seems to be badly off, the statistician may test it with
a goodness-of-fit test. The “center” of the bell, the place where it has a “peak,”
is called the mean and designated by the greek letter n. The distance from
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p to the point at which the curvature changes from downward to upward is
the standard deviation, designed by o. The area under the curve is 1. The
area in the interval B * o is about 68 percent of the total; the area between
w — 20 and p + 20 is about 95 percent of the total, and the area between
p ~ 30 and u + 30 is well over 99 percent of the total. The curve is
completely characterized by a knowledge of u and o.

Returning to the bulbs and assuming a normal distribution for each of the
2 populations, we can condense or summarize the data even further. What
single number is typical of or characterizes or summarizes the lifetimes in
the sample? The average lifetime of the bulbs immediately comes to mind,
but what shall we average? We think of the entire past production of bulb A
as the population of interest and let x; be the lifetime of the i-th bulb (i =
1, 2, . . . N) produced. The population average ., would then be the sum
of the lifetimes divided by the number of bulbs in the sum p, = 2x/N. The
number N, however, is in the millions, and there was no possible way to
have gotten the necessary measurements. From the 100 measurements taken
on the Type A bulbs, the sample average is X = ZX-/"v where n = 100.
The sample average is an estimate of the population average. The formula
Sx/n is an estimator of .. Having obtained X, we would like to do the same
thing for bulb B, which is just getting into production. How large a sample
shall we take? With bulb A there was little choice: We took all the information
available at the time. It seems intuitive that the larger the sample size the
better the estimate (a property that will later be called consistency). We thus
take the largest sample—say, m bulbs—we can afford; the cost will also
involve the time spent in testing. The sample average is y = Ey,-/m. We
could now compare X and y to see which is larger, but we do not have, as
yet, a good standard with which to judge the difference. If the sample size
m were small and if the difference between X and y were small, a different
sample of bulbs might have yielded an average that would have reversed the
order of X and 5. Whether normality holds or not, a useful measure of the
scatter of the data around the sample mean is the sample variance s, =
Z(y, — ¥)*(n— 1), which estimates or approximates the population variance
ol =0 — u,)*/N, the average squared deviation from the mean. We
divide the sample variance by (n— 1) instead of n because it can be shown
that the average value of s2 (with a divisor of n) is (n— 1)o%/N o;. In other
words, s> would be a biased estimator of o7, and the divisor (n — 1) is chosen
to unbias it.

We can now express our uncertainty in the location of the sample mean
p, by making an interval estimate of p.,, which has a “high probability” of
containing p, in the following sense: If a large number of such intervals were
constructed from different samples, 95 percent of them would contain the
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population mean. That interval is called a 95 percent confidence interval for
,, as opposed to the point estimate ¥ of w,. The interval is § + ¢ s//n,
where ¢ is a number that depends upon the sample size n and is taken from
tabled values of the Student’s ¢ distribution, a connection we will explore
later. .

Finally, we can test whether the population means for the 2 types of bulbs
differ significantly, our hypothesis being that u, = p,. The sample means
clearly differ only if the difference between them is larger than the variability
within the measurements that make up the means. The difference ¥ — y is
distributed with mean zero and standard deviation of (sj/m + s¥n)'? if and
only if u, = p,. Differences of about 2 of those standard deviations are not
so unusual, but differences much larger than that are rare—so rare that we
are willing to take a small risk (of the order of 5 percent) of being wrong
and declare that p, is not equal to j.,. In other words, we decide that one
mean is greater than the other. The actual number of standard deviations by
which ¥ and y can differ without differing significantly is again found in the
tables of the Student’s ¢ distribution and depends on n,m, and the size of the
small risk we take of being wrong. It is one example of hypothesis-testing,
a very valuable tool.

In this chapter we have touched on random variables and their probability
distributions. We have seen how a histogram approximates the probability
density function. Those matters are covered in Chapter 2. Lifetimes of elec-
trical components frequently have distributions other than normal. A guide
to other distributions and their uses is found in Chapter 3. We have examined
estimators and estimates of the mean and variance of the normal distribution,
and we have given some thought to the desirable properties of an estimator
(consistency and unbiasedness). We have touched on the topic of hypothesis
testing. The areas of estimation and hypothesis testing are taken up in detail
in Chapter 4.

Suppose now that a special coating of the filament was the design change
that resulted in the Type B bulbs. Some thought has been given to whether
the life of the bulb might increase directly with the thickness of that coating.
Some experiments are carried out using various thicknesses of the coating
and testing of the life of each bulb. The data are plotted as lifetime (y) versus
thickness (x), and it appears there is a linear relationship. The plot of the data

“points is called a scattergram or scatterplot. How to fit a straight line to the

data is a problem in estimating the parameters (the slope and intercept) of a
. straight line. Again, hypothesis testing is used to decide whether the slope is
zero (no change in lifetime with thickness) or not. THose matters form the
content of Chapter 5 on Regression.

It may be that 3 different coatings can be applied, each differing in its

composition. In order to test which of the 3 gives the longest averag~ lifetime,

-
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we would design an experiment in which we would measure the lifetime of
k bulbs with each coating. The analysis of those data would involve the
Analysis of Variance, a subject taken up in Chapter 6: The Design of Exper-
iments and Analysis of Variance.

The probability that a bulb will perform its function (burn) for a given
length of time under given circumstances is the reliability of the bulb. The
whole area of estimation and testing of lifetime data is treated in Chapter 7:
Reliability and Survival Analysis.

It may have been of interest to estimate the intensity of light from the new
bulbs as a function of the age of the bulb. If we had a continuous record of
the intensity (or a test every 30 minutes, say) with time, we would have a
time series and the analysis of the data would come under the chapter on
Time Series and its parent: Stochastic Processes.

In the production of the new bulbs, it may be desirable or necessary for
the manufacturer to assure himself continually that the thickness of the coating
is uniform. To do that, he may check the thickness of 3 bulbs from each
day’s production. The techniques for obtaining such assurance are given in
the chapter on Quality Control.

If we have 2 characteristics of interest, say lifetime and intensity, then
there are 2 random variables to be considered simultaneously. That is a
problem in Multivariate Analysis, which falls under the chapter of that name.

REFERENCES

For the EDA techniques in this chapter see Tukey, J. W. 1977. Exploratory
Data Analysis. Reading, Mass: Addison-Wesley. The classical techniques
will be explained later in detail.






Random Variables and
Probability
Distributions

When the average citizen sees a game of dice, he knows intuitively that
the outcome of any 1 roll of the dice is unpredictable—that he is faced with
a “chance” or “random” phenomenon. He sees quickly that there are 36
possible outcomes (for each of the 6 sides of die #1 he can get any of the 6
sides of die #2). He nevertheless realizes the possibilities of betting on the
outcome when he sees that there is only 1 outcome, (1,1), which gives a “2,”
while 6 outcomes, (1,6), (2,5), (3,4), 4,3), (5,2), (6,1), give a “7.” Thus
the “probability” of a 2 is 1/36 and that of a 7 i- 5/36. The set of outcomes
or “scores” with their associated probabilities \ _ustitutes a probability dis-
tribution and is his best aid to intelligent betting. In that case the dice were
treated or “shaken” alike. Individual outcomes differ, but in the “long-run”
one can predict how often each outcome will occur. What the layman may
not realize is that even in a very precise chemical experiment the outcome is
random. The possible outcomes may lie within a narrow range, but when
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;eemingly identical units are treated as much alike as possible, they still
rispond differently; there is still some “variability” in the outcome. and the
~hemist, with the aid of statistics, summarizes the data by telling his readers
what they can bet on. We shall now repeat those ideas with more
Jetail. '

In an experiment the investigator observes the response to a given set of
~onditions. In some experiments the response is invariably the same, and we
say that there is a deterministic regularity in the outcome. In other experi-
ments, such as the toss of a die, the outcome is unpredictable, but the expes-
iment has the next best property: The set of outcomes is known, and each
outcome occurs with a certain relative frequency. Those random experiments
(or random trials or random events), as they are called, are thus said to have
a statistical regularity in the outcome. The relative frequency with which
each outcome occurs approaches a stable limit, called the probability of that
random event.

The set of all possible outcomes of a random experiment is called the
sample space or outcome space S, and each outcome is a sample point @ in
that space. An event is a subset of the sample space, but there may be some
subsets that are not events. An event consisting of a single point is an ele-
mentary event. An event E is said to occur if the outcome o is in E. In tossing
a pair of dice, let = (2,3) be the outcome of a 2 on the first die and a 3
on the second. The point (2,3) is an elementary event. If E is the event that
the total shown on the 2 dice equals 5, E occurs if the outcome is (1,4),
4,1), (2,3), or (3,2).

The outcome of a coin-tossing experiment may be “heads” or “tails.” In
drawing a colored ball from an urn. the outcome may be “blue.” In drawing
a man from a group of men, the outcome might be Don or Joe. For the sake
of a mathematical treatment (rather than a verbal one) we need to assign a
real nuinber to every outcome. The number assigned will depend upon our
purpose. We might assign the number 1 to “heads” and 0 to “tails,” which
is useful if we are counting heads. We could assign 1 to “blue” and O to any
other color; to each man we could assign his height in inches. Given a set A
of “objects,” a rule that assigns to each object in A 1 (and only 1) member
of a set B is called a function with domain A and range B. A random variable
is a function in which A is the set of outcomes and B consists of real numbers,
including + . In tossing a pair of die, we assign to each outcome the sum
of the number of spots on the upward faces. It is important that the function
representing the random variable be single-valued and real-valued. If the
outcome is a number x in the interval (— 10, 10), say, we cannot let the
square root of the outcome be the random variable for 2 reasons: (1) If x =
4, bar+2 and —2 are square roots, and there must be only 1 number



