

Programming by
Design

A First Course in
Structured Programming

Special Edition

Philip L. Miller, PhD
Computer Science Department
Carnegie Mellon University

Lee W. Miller
Computer Science Department
Carnegie Mellon University

with Purvis M. Jackson
Software Engineering Institute
Carnegic Mellon University

Wadsworth Publishing Company
Belmont, California

Carnegie Publishing, Inc.
Pittsburgh, Pennsylvania

Copyright © 1987, 1986 by Carnegie Publishing, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the
copyright holder.

Portions of Chapter 2 of this book are from Karel The Robot by Richard E. Pattis,
copyright (c) 1981, John Wiley & Sons, Inc. Reprinted with permission.

ISBN 0-534-08244-0

Printed in the United States of America
23456789 —9089 8887

Foreword

The driving force behind the creation, introduction, and refinement of the College Board’s Advanced
Placement (AP) Computer Science course has been Phil Miller. Far more than any other one person,
Phil has shaped both the spirit and content of that course. He served first as a member of a College
Board Task Force considering College Board offerings in computer science, then as a member of the
initial AP Development Committee for the AP Computer Science examination, and finally as Chairman
of that committee for the last 4 years. Now Phil, together with Lee Miller, has authored a textbook that
displays the same principles of programming methodology that he has consistently advocated for the
AP Computer Science course since its inception.

As an observer of the work of the AP Computer Science Development Committee and as a reviewer of
Programming by Design, I see the same themes dominating the textbook that I have seen driving the
AP course. The use of Karel the Robot in the textbook as a precursor to Pascal mirrors the influence of
Phil on the AP course, where the earliest possible introduction of procedural abstraction as a dominant
characteristic is one of the principles on which Phil’s views prevailed within the AP Development
Commmittee even before he became its chairman.

The exact course material in a first course varies from university to university. It is my observation
through work with the AP Computer Science Committee and the GRE Computer Science Committee
that this text is in line with what is being taught at leading computer science departments around the
country, though I have made no systematic investigation of curricula. This text solidly covers the
aspects of programming methods of the year-long AP Computer Science course, though teachers will
want to supplement Programming by Design with a good algorithms/data-structures text for a year-
long AP course.

The effervescence of Phil Miller’s personal style so evident in earlier versions of this text has been
toned down in this published edition. I personally preferred the "rough-cut," intimate approach, but
appreciate the need for a more civilized touch. Reviewing this text is much like watching Phil in a
three piece suit delivering a polished lecture on the AP program after having watched him make the
same points in committee using much more colorful language while he was dressed in blue jeans.
Nevertheless, his commitment to the teaching of programming methods by means of real
communication with the student still comes through. Programming by Design is not a dry presentation
of programming methodology nor is it a passive instrument in the teacher’s hand. It is rich in
pedagogical material and tries to teach by engaging the student, and I believe it succeeds.

J. R. Jefferson Wadkins, Senior Examiner
Test Specialist for the AP CS Examination
Educational Testing Service

Preface

When we set out to write this book, we had one simple goal in mind—to develop a text that would
present the materials appropriate for a first course in computer science. We were motivated to take on
the project by the fact that—even though there were numerous texts on the market—none of the
available texts effectively supported the aims of the introductory courses offered at Carnegie Mellon
University. No matter which of the available texts we tried, we found ourselves faced with two
primary problems: (1) topics we hold to be important were not treated, and (2) far too much of our time
in lectures had to be devoted to explaining to students the material they had read from the textbook. In
attempts to overcome those two problems, we developed a significant stack of lecture notes and
extended examples to explain further the concepts we found to be lacking or inadequately explained in
each of the texts we had attempted to use. Increasingly, we found ourselves relying more on our notes
and less on available texts. Eventually, we arrived at a point where we began distributing our materials
to the students, which enabled us to follow the course we felt to be appropriate. Moreover, it enabled
us to benefit from the feedback supplied by the students and other instructors—feedback that told us
that although we had made significant progress toward solving our first problem, the second problem
was still evident.

The feedback we received made poignant the need for a thorough text, one that would go beyond the
ritual of discussing a topic to the unorthodox practice of explaining the topic. Toward that end, we
have attempted to develop a book that incorporates the teaching we had been forced to add to texts we
previously used. This meant adding hundreds of illustrations and hundreds more programming
examples. Our experience with previous versions of this book suggests that we have gotten a great deal
of the teacher into the text. This book is intended now for use at either the college level or in high
schools that offer advanced courses. No background in computing or advanced mathematics is
assumed. The only prerequisite is literacy in the English language.

To Teachers

Although we intend this book to be used to teach programming methodology, we realize that
programming skills must be learned by writing programs in a particular language. Toward that end,
our presentation includes the study of two programming languages, Karel and Pascal, both of which are
used as vehicles for developing general programming and problem-solving skills. Pascal is given the
more thorough treatment of the two.

There are numerous reasons for selecting Pascal as a teaching language. Most important is the
prevalence of computer systems supporting Pascal, the pertinence of the high-level, block-structured
features of the language, our own success with it at Camnegie Mellon University, and the strong
endorsement it has received from the College Board’s committee that designed the Advanced
Placement Computer Science (APCS) course.

Having found that the initial segment of a programming course is crucial to students’ perception of the
subject, we have selected the language Karel as a precursor to Pascal. We have found that Karel
enables them to grasp somewhat easily the concepts of structured programming, which we later look at
in more detail when discussing Pascal. We use Karel as an overview of the subject; we use Pascal to
provide the necessary detail and reinforcement. With Karel, the novice can plunge into programming
and problem solving with a minimum of overhead. Further, Karel provides an interesting problem
domain, within which students can learn to write increasingly complex, well-structured programs.

Karel is a robot simulator language, developed by Richard E. Pattis, that allows students to see their
programs execute in the two-dimensional world of Karel the Robot. At Carnegie Mellon, we teach

X Preface

Karel with the aid of the simulator software; however, others have reported success in using Karel
without the simulator, i.e., by having students develop their programming solutions on paper. In our
own experience, we have found that the time spent with Karel pays for itself many times over. It
provides a very accurate overview of structured programming methodology. More importantly, it
makes subsequent study of Pascal much easier for the student. Beyond this, thanks to the intuitive
nature of Karel, it is superb in overcoming the "fear of computing" syndrome common to many

students.

To Students

A common, and understandable, question many students ask is, "Why should I learn about computers
and programming?" There are, of course, a number of ways that question might be answered. In
general, however, there are four reasons why we think you should learn about computing.

Computers have become very prevalent in today’s society. The computer has already changed, or is in
the process of influencing, many aspects of our lives, ranging from the scientific exploration of space to
the cash registers at the local supermarket. Every time we pick up the telephone or watch the evening
news, we witness applications of computing. With computers so prevalent, it is important for you to
understand the principles of computing and how they affect your life. Usually, people feel less
annoyed and less threatened by things they understand. Thus, the first reason for understanding
computing is to better understand the world around us.

Computing is thought of by many people to be the province of the scientifically inclined, the folks who
love and live by numbers. Today, however, computers are no longer relegated to the laboratories and
offices of engineering and science departments. In fact, they are used throughout the arts, business, and
the humanities. In each of these areas, computing is allowing new approaches to long-standing
problems. Thus, a second reason for learning about computing is to share in the intellectual stimulation
it can foster—in any discipline.

Estimates by experts show that there were 100,000 available positions for software professionals in
1980 that simply could not be filled because the demand for software far exceeds our ability to produce
software professionals. The shortage is expected to reach one million by 1990, if the current trend
continues. Unlike people educated or trained in other professions, software professionals are virtually
guaranteed well-paying job opportunities. Thus, the third reason for learning about computing is to
gain the knowledge and experience that can lead to a lucrative career within the computing industry.

The old adage that states "Time is money" can be altered slightly to "Time is life" to more accurately
reflect the importance of time. How we spend our time is how we spend our lives. All too often we
literally waste time by doing the same things over and over that we could do more effectively in other
ways. The average person spends a significant amount of time on relatively mundane tasks—such as
record keeping and filing expenses—that can be handled more quickly and more accurately by
computer. Thus, the fourth—and perhaps most important—reason for learning about computing is to
gain more control over how we spend our time.

The material presented in this book will provide you with the principles and concepts necessary for you
to create a whole range of programs capable of solving a number of important problems. But beyond
that, you can apply many of the principles to problems other than those involving programming. In
short, the concepts in this text provide methods that you may use to think about any complex problem
or situation. Properly used, they will serve you well. Work the exercises and solve the problems at the
end of each section to make sure you understand the principles.

Some of the sections and exercises are marked with asterisks (*) to indicate that you may wish to skip
them on first reading. We suggest you skip all sections marked with three asterisks (***) on first
reading. Some readers may wish to skip these items altogether.

Preface xi

To All

This book comprises 18 chapters, 8 appendices, and 4 indices. It contains nearly 500 illustrations and
over 3,000 index entries. We utilized the computer to prepare every facet of this book. All page layout
was done using the computer; all of the hundreds of illustrations were prepared by computer and
merged electronically using custom-made software; and the thousands of index entries were processed
completely automatically. We can not imagine preparing a document such as this without a computer.

Whatever success this book, or subsequent editions of it, may have will be due in large part to the good
ideas and sound advice offered by our colleagues at Carnegie Mellon University and elsewhere in the
Computer Science community. Were it not for their suggestions and continued encouragement, this
book would not have reached its current state. For their support throughout this project, we wish to
thank all of the people who read and commented on drafts of chapters, who suggested exercises or
problems, and who gave to us the inspiration to continue. We especially thank the lecturers at
Carnegie Mellon: Terry Gill, Nahid Capell, Dennis Goldenson, Jim Roberts, Jacobo Carrasquel, and
particularly Mark Stehlik, whose genuine concern for students has found its way onto a great many
pages of this book. We also thank Rob Chandhok, Harry Holland, Wanda Keppler, Becky Alden,
Michelle Lurye, Eric Goodman, Amy McMurtry, and Nick Spies. We recognize the students who
suffered with us through earlier drafts while we developed and refined this work. We would like to
especially thank Bob Spies, who patiently provided many hours of technical and other assistance at a
time when he was quite busy with many other projects.

Although the first draft of this book was written by a two-person author team, the final form was the
result of three people. The extensive contributions of Purvis Jackson can be seen on nearly every page
of this book. To recognize his contributions, we include his name in the appropriate place, on the front
cover.

PLM.
LWM.

Pittsburgh, Pennsylvania
1986

Contents

UNIT I: Foundations of Computing 1
Chapter 1: An Historical Perspective 3

1.1. Automatic Computing
Charles Babbage
Early American Computers
1.2. Theoretical Underpinnings
David Hilbert
Kurt Gadel
Alan Turing
Alonzo Church
1.3. Modern Computing
The Von Neumann Machine
The Modern Computer
Programming Languages
The Personal Computer
1.4. Areas of Computer Science
Computing Systems
Programming Systems
Artificial Intelligence
Theory
1.5. Summary

Chapter 2: Overview of Programming

2.1. Programming

2.2. Programming Languages

2.3. The Robot World
Karel’s World
Karel’s Capabilities
Tasks and Situations

2.4. Primitive Instructions and Simple Programs
Changing Position
Handling Beepers
Finishing a Task
A Complete Program
Error Shutoffs
Programming Errors
Problem Set

2.5. Extending Karel’s Vocabulary
Creating a More Natural Programming Language
A Mechanism that Defines New Instructions
Block Structuring
The Meaning and Correctness of New Instructions
Defining New Instructions in a Program
Boxing: How Karel Understands a Program
An Ungrammatical Program
Programming by Stepwise Refinement
Writing Understandable Programs
Problem Set

2.6. Conditionally Executing Instructions
The IF/THEN Instruction
The Conditions Karel Can Test
Simple Examples of the IF/THEN Instruction
The IF/THEN/ELSE Instruction

21

VRV IAINIIANU &AW

Xiv

2.7.

Contents

Nested IF Instructions

Transformations for Simplifying IF Instructions

The Dangling ELSE
Problem Set
Instructions That Repeat
The ITERATE Instruction
The WHILE Instruction
Repeating Instructions and Block Structure
IF Instructions in WHILE Loops

A Large Program Written by Stepwise Refinement

Problem Set

UNIT II: Elements of Pascal

Chapter 3: Programming in Pascal

3.1.
3.2.
33.

3.7.
3.8.
3.9.

3.10.
3.11.
3.12.
3.13.
3.14.

3.15.
3.16.
3.17.
3.18.
3.19.

Comparing Pascal with Karel
Generating Output
Defining New Statements
Questions
Exercises
Problems

. Naming Constants
. Writing Expressions
. Storing Expressions

Questions
Exercises
Problems
Commenting Programs
Formatting Output
Labeling Output
Solving Bigger Programming Problems
Reading Input
Prompting for Input
Naming All Constants
Picking Good Names
Questions
Exercises
Problems
Putting It All Together
Chapter Summary
Summary of Style
Summary of Terms
Chapter Problems

Chapter 4: Background Tools 117

4.1.

4.2,

A Tool for Describing Pascal and Other Languages
Questions
Exercises

Operators and Expressions
Questions

4.3. Pascal’s Four Primitive Types

INTEGER
REAL
CHAR
BOOLEAN

91
93

4.4. Some Finer Points of Operators, Types, and Evaluation

Binary and Unary Operators

117
119
119
120
122
122
122
125
127
129
131
131

Precedence Rules

Type Coercion

Type Cardinality
4.5. Chapter Summary
4.6. Summary of Terms
4.7. Chapter Questions

Chapter 5: Details of Input, Output, and Variables

5.1. The Details of Output
The Output Display

The Literal String and the Single Quote

Writing Output

Output Format Specification
Writing Multiple Expressions
When Expressions Are Actually Written

Questions
Exercises
Problems
5.2. Variables and Assignment
The Variable

The Assignment Statement

Questions
Exercises
Problems
5.3. The Details of Input
READ and READLN

Reading Multiple Values
When Values Are Actually Read
Common Problems with Reading Input

Questions
Exercises
Problems
5.4. Chapter Summary
5.5. Summary of Style
5.6. Summary of Terms
5.7. Chapter Problems

Chapter 6: Conditional Execution

6.1. IF-THEN Statement
Formal Definition

Compound Statements

Pascal’s Conditions
Questions
Exercises
Problems

6.2. IF-THEN-ELSE Statement
Formal Definition
Dangling ELSE
Questions
Exercises
Problems

6.3. CASE Statement
Formal Definition
Questions
Exercises
Problems

6.4. A Debugging Aid

6.5. Simplifying the Condition
Commutative Law
Associative Law

175

Contents

132
135
135
136
136
137

139

139
139
140
140
141
143
144
144
145
145
146
146
153
157
157
158
159
159
164
167
167
168
168
170
170
172
172
173

175
176
176
177
178
179
179
180
181
181
182
182
183
183

189
189
189
190
191
191
192

XV

xvi Contents

Distributive Laws
DeMorgan’s Laws
Other Laws
Questions
Exercises

6.6. Chapter Summary

6.7. Summary of Style

6.8. Summary of Terms

6.9. Chapter Problems

Chapter 7: Repetition 199

7.1. The WHILE Statement
Formal Definition
Infinite and Nonexecuting Loops
Questions
Exercises
Problems
7.2. The FOR Statement
Formal Definition
Nested Loops
Questions
Exercises
Problems
7.3. The REPEAT Statement
Loop Equivalence
Formal Definition
Questions
Exercises
Problems
7.4. Loop Construction and the Loop Invariant
Method Not Magic
A Method of Determining Which Loop Construct to Use
A Method of Selecting the Loop Condition
A Method of Completing the Loop Body
Adding Requirements Outside the Loop
A Method of Verifying Loop Termination
A Method of Verifying That a Loop Works
A Method of Verifying That a Loop Always Works
Method for Building Loops
Applying the Systematic Approach to a Familiar Problem
Systematic Approach to Another Problem: The Marble Bag
Questions
Exercises
Problems
7.5. Chapter Summary
7.6. Summary of Style
7.7. Summary of Terms
7.8. Chapter Problems

UNIT III: Modular Programming 239
Chapter 8: Procedures 241

8.1. Modular Programming
Problem Solving
Modular Problem Solving
Top-Down Design and Solution Trees
A Programming Methodology

192
193
193
194
195
195
197
197
198

241

241
242

8.2.

8.3.
84.

Contents

Questions
Exercises
Subprogram Concepts
A Model of Subprogram Execution
Subprogram Declarations and Calls
Procedures and Functions
Questions
Simple Procedures
Subprogram Comments and Declarations
Scope of Identifiers
Local and Global Declarations
Boxing Programs
Simulating Programs
Up-Level Addressing and Side Effects
Nested Declarations
A Style of Declaration
Questions
Exercises

. Chapter Summary
. Summary of Style

. Summary of Terms
. Chapter Problems

Chapter 9: Parameters 273

9.1.

9.2.

Value Parameters
Declaring Procedures with Value Parameters
Formal Parameters, Actual Parameters, and Parameter Binding
Expressions as Actual Value Parameters
Procedures with More Than One Value Parameter
Up-Level Addressing of Variables: A Practice To Be Avoided
Questions
Exercises
Problems
Variable Parameters
Declaring Procedures with VAR Parameters
A Technique of Ensuring Parameter Passing
Subprogram Comments: Another Tool in the Toolbox
A Style of Declaration
Questions
Exercises

. Chapter Summary
. Summary of Style

. Summary of Terms
. Chapter Problems

Chapter 10: Functions 301

10.1.
10.2.
10.3.
10.4.
10.5.
10.6.
10.7.
10.8.

10.9.

What Functions Are
Predefined Functions
Calling Functions
Defining New Functions
When To Use Functions
When Not to Use Functions
Structured Comments for Functions
Programming with Stubs

Questions

Exercises

Problems
Chapter Summary

10.10. Summary of Style
10.11. Summary of Terms

245
245
245
246
248
248
248
249
251
251
252
252
254
263
264
267
268
269
269
270
2N
2N

273
275
277
279
282
284
285
286
287
287
289
292
295
295
296
297
298
299

300

301
303
303
304
308
309
310
310
312
313
314
315
316
316

Xvii

xviii Contents

10.12. Chapter Problems 316

Chapter 11: Recursive Subprograms 317

11.1. Recursive Functions 318
11.2. Recursive Procedures 327
Questions 333
Exercises 333
Problems 333
11.3. Chapter Summary 334
11.4. Summary of Terms 334

UNIT IV: User-Defined Types 335
Chapter 12: Simple Types 337

12.1. The Need for Other Types 337
12.2. Defining a New Type 340
12.3. A Taxonomy of Pascal Types 340
Questions 343
12.4. Enumerated Types 343
One More Example 345
Order 345
Ordinal Types 347
Input and Output of Enumerated Types 347
Some Fine Points 348
Questions 350
Exercises 350
12.5. Subrange Types 351
Questions 353
Exercises 353
12.6. Chapter Summary 354
12.7. Summary of Terms 355

Chapter 13: Structured External Types 357

13.1. An Overview of Files 357
13.2. Pascal Files 358
Declaring Files 360
The Most Common Files: Text Files 360
Peculiarities of Pascal File Variables 361
Questions 362
Exercises 362
13.3. Reading Files 363
Checking for the End-Of-File Marker 364
Checking for End-Of-Line 365
Looking Ahead: The File Buffer Variable 368
Counting Lines: Another Application 369
Common Errors 369
Questions 370
Problems 370
13.4. Writing Files 3n
13.5. Internal Files, External Files, and the Program Heading 372
Questions 373
Problems 373
13.6. Selected Uses of Files 374
Displaying a Text File 374
Merging Two Files 375

13.7. Chapter Summary 376

Contents Xix

13.8. Summary of Terms 378
13.9. Chapter Problems 378

Chapter 14: Arrays 381

14.1. The Need for Arrays 381
14.2. Array Terminology and Declaring Arrays 382
14.3. Manipulating Arrays and Their Components 383
14.4. Some Important Points About Arrays 385
Random Access 385
Writing an Entire Array 385
Copying an Entire Array 385
Finding the Maximum Element 386
14.5. Other Kinds of Array Indexing 387
14.6. Arrays of Arrays and Multiple Indexing Sets 389
14.7. String Variables 392
Initializing String Variables 393
Reading String Variables 394
Writing String Variables 394
Comparing String Variables 394
14.8. Questions 395
14.9. Problems 396
14.10. Chapter Summary 396
14.11. Summary of Terms 397

Chapter 15: Records and Sets 399

15.1. Records 399
Declaring Records 401
Accessing Record Components 402
Compact Record Definitions 402
Collections of Records 403
The WITH Statement 404
A Different View of Records 405
Questions 406
Exercises 407

15.2. Sets 407
Set Definition 407
Set Operations 407
Set Relations 408
The Empty Set and the Universal Set 409
Pascal Sets 410
Questions 413
Problems 414

15.3. Solving a Larger Problem: Managing a Baseball Team 415
Problem Description 415
Program Design and Representation 415

15.4. *** Variant Records 420

15.5. Chapter Summary 423

15.6. Summary of Terms 424

UNIT V: Modern Programming 425
Chapter 16: Style: Writing Better Programs 427

16.1. A Style of Program Specification 427
An Example Functional Specification 428
16.2. A Style of Program Design 428

Top-Down Design 429

XX Contents

Example of Program Design
16.3. A Style of Program Implementation

Declarations

Inter-Module Communication

Comments and Documentation

Efficiency

Readability

Understandability

An Example of Program Implementation
16.4. A Style of Program Verification
16.5. Notes on Debugging

Chapter 17: Dynamic Memory Allocation

17.1. Allocation of Computer Memory
Questions

17.2. Manipulating Dynamic Variables
Questions
Exercises

17.3. Dynamically Allocating Record Variables
Questions

17.4. Linking Dynamic Variables
An Analogy to the Linked List
A Linked List in Pascal
An Implementation of a Linked List in Pascal
Replacing an Array of Pointers with a Linked List
Questions

17.5. Chapter Summary

17.6. Summary of Terms

17.7. Chapter Problems

Chapter 18: Searching and Sorting 473

18.1. Searching
Sequential or Linear Search
The Ordered Search
Binary Search
Comparing Algorithms
Families of Functions
Order Arithmetic and Order Comparisons
Comparing Searching Algorithms
Summary of Searching Algorithms
Questions
Exercises
18.2. Sorting
Order, Order!
Internal and External Sorting
Insertion Sort
Bubble Sort
Selection Sort
Merge Sort
A Lower Bound on Comparison-Based Sorting
Selecting the Best Sorting Algorithm
Questions
Problems
18.3. Chapter Summary
18.4. Summary of Terms

449

429
430
431
432
433
436
437

441
444
446

449
451
451
456
456
457
458
459
459
463
467
468
470
470
471
471

473
474
476
477
478
479
481
482
482
483
483
484

485
485
487
488
490
493
494
495
495
496
497

Contents

Appendix 1. Karel Reserved Words and Special Symbols
Appendix II. Karel Syntax—BNF

Appendix III. Karel Syntax—Bubble Diagrams
Appendix IV. Pascal Reserved Words and Special Symbols
Appendix V. Pascal Syntax—BNF

Appendix VI. Pascal Syntax—Bubble Diagrams
Appendix VII. Pascal Library Routines

Appendix VIII. Character Sets

References

Index of Figures

Index of Tables

Index of Programming Examples

Index of Terms

499
501

503
507
509
517
543
545
547
549
551
553
559

UNIT I: Foundations of Computing

Chapter 1: An Historical Perspective

Chapter 2: Overview of Programming

gls{wlnfafe] [s]s] [e[+]7]2]s]}
Input
Finite
State
Machine
Output

il [slafnfs[wel=[-Talo[sT T [}

Output

—

Input

Central

Control

Unit

t .

Memory

Arithmetic
Logic
Unit

