MATHEMATICS
IN SCIENCE

" AND
ENGINEERING

- Volume 99

Sparse
Matrices

Reginald P. Tewarson

SPARSE MATRICES

REGINALD P. TEWARSON_

Department of Applied Mathematics and Statistics
State University of New York
Stony Brook, New York

ACADEMIC PRESS New York and London 1973

CopYRIGHT © 1973, BY ACADEMIC PRESS, INC.

ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by
ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road, London NW1

LiBRARY OF CONGRESS CATALOG CARD NUMBER: 72-88359

AMS (MOS) 1970 Subject Classifications: 65F0S, 65F15, 65F25,65F30

PRINTED IN THE UNITED STATES OF AMERICA

Preface

The purpose of this book is to present in a unified and coherent
form the large amount of research material currently available in
various professional journals in the area of computations involving
sparse matrices. At present, results in this area are not available in
book form, particularly those involving direct methods for computing
the inverses and the eigenvalues and eigenvectors of large sparse
matrices.

Sparse matrices occur in the solution of many important practical
problems, e.g., in structural analyses, network theory and power
distribution systems, numerical solution of differential equations,
graph theory, as well as in genetic theory, behavioral and social
sciences, and computer programming. As our technology increases
in complexity, we can expect that large sparse matrices will continue
to occur in many future applications involving large systems, e.g.,
scheduling problems for metropolitan fire departments and ambu-
lances, simulation of traffic lights, pattern recognition, and urban
planning.

xi

xii Preface

My interest in the area of sparse matrices dates back to 1962-1964,
when I helped design and write a computer code for solving linear
programming problems for a major computer manufacturer. The
matrices occurring in linear programming problems are generally
large and sparse (they have few nonzero elements) ; therefore, in order
to make the code efficient, only the nonzero elements of such matrices
are stored and operated on. I found then that very little published
material was available on computing the sparse factored form of
inverses needed in the linear programming algorithms. This experience
led to the publication of a number of research papers.

In the spring of 1968, I was invited to speak at a Symposium on
Sparse Matrices and Their Applications held at IBM, Yorktown
Heights, New York in September of the same year. Another invitation
followed in 1969 to present a paper at a Conference on Large Sparse
Sets of Linear Equations at Oxford University in April 1970. In the
summer of 1969, I wrote a survey paper on computations with sparse
matrices at the request of the editors of the Society of Industrial and
Applied Mathematics, which appeared in the September 1970 issue of
the SIAM Review. In the same year Professor R. Bellman suggested
that I write a book on this subject. It was a happy coincidence when
Professor L. Fox asked me to give a graduate seminar on Sparse
Matrices during the Hillary term 1970 at Oxford University. Out of
these lectures the book grew.

This book is intended for numerical analysts, computer scientists,
engineers, applied mathematicians, operations researchers, and others
who have occasion to deal with large sparse matrices. It is aimed at
graduate—senior level students. It is assumed that the reader has had
a course in linear algebra. I have tried to avoid a terse mathematical
style at the cost of being at times redundant and attempted to strike a
balance between rigor and application. I believe that applications
should lead to generalizations and abstractions. As far as is possible,
the algorithmic or constructive approach has been followed in the book.

I have given the basic techniques and recent developments in direct
methods of computing the inverses and the eigenvalues and eigen-
vectors of large sparse matrices. I have avoided including material
which is readily available in well-known texts in numerical analysis,
except that needed as a basis for the material developed in this
book. :

Preface xut

The organization of the text is as follows.

In Chapter 1, several commonly used schemes for storing large
sparse matrices are described, and a method for scalmg matrices is
given, such that in computations involving the scaled matrices, the
round-off errors remain small.

In Chapter 2, a discussion of the well-known Gaussian elimination
method is given. It is shown how the Gaussian elimination can be
used to express the inverse of a given sparse matrix in a factored form
called the Elimination Form of Inverse (EFI). Techniques are given
for getting as sparse an EFI of a given sparse matrix as possible. Some
methods for minimizing the total number of arithmetical operations
in the evaluation of the EFI are also described. The storage and the
use of the EFI in practical computations are discussed.

In Chapter 3, several methods are given for obtaining a reasonably
sparse EF1. These methods do not require as much work as those in
Chapter 2. The permutation of the given sparse matrix to one of the
several forms (e.g., the band form) that are desirable for getting a
sparse EF1 is also discussed.

The Crout, Doolittle, and Choleskey methods, which are closely
related to the Gaussian elimination method, are considered in
Chapter 4. Techniques for minimizing the number of nonzeros created
at each step for these methods are given ; these techniques are naturally
similar to those given in Chapters 2 and 3 for the Gaussian elimination
method. : »

In Chapter 5, the well-known Gauss-Jordan elimination method is
investigated, and it is shown low another factored form of inverse,

" called the Product Form of Inverse (PFT) can be obtained. The relation

between the PFI and the EFI, as well as the techniques for finding a
sparse PFI are also given.

The orthonormalization of a given set of sparse vectors by using
the Gram-Schmidt, the Householder, or the Givens method is
discussed in Chapter 6. The last two methods are also used in Chapter 7
for evaluating the eigenvalues and eigenvectors of sparse matrices.
Another method in Chapter 7 makes use of a technique similar to the
Gaussian elimination method to transform the given matrix. In both
chapters, techniques are described which tend to keep the total number
of new nonzeros (created during the computational process) to a
minimum.

xiv Preface

Finally, in Chapter 8, the relevant changes in the EFI or the PFI,
when one or more columns of the given matrix are changed, are
described. Thishappensin many applications, e.g., linear prograrhming.

* Another factored form of the inverse, which is similar to the EFI, is
also given.

A comprehensive bibliography on sparse matrices follows Chapter 8.

Acknowledgments

I would like to express my thanks to the following: Professor L. Fox,
for inviting me to spend my sabbatical year at Oxford University,
where most of this book was written ; Professor R. Bellman, for his
initiative in suggesting that this book be written, as well as for his
advice and encouragement; Professor R. Joseph and my Ph.D.
students-—Mr. 1. Duff (Oxford), Mr. Y. T. Chen, and Mr. K. Y. Cheng
—for reading and suggesting various improvements in the manuscript.

Contents

Preface

Acknowledgments

Chapter 1. Preliminary Considerations

1.1 Introduction

1.2 Sparse Matrices

1.3 Packed Form of Storage

1.4 Scaling

1.5 Bibliography and Comments

Chapter 2. The Gaussian Elimination

2.1 Introduction

2.2 The Basic Method

2.3 Pivoting and Round-off Errors
2.4 The Elimination Form of Inverse

vii

xi

Xxv

——
L DN e e

15
15
19
20

viii Contents

2.5 Minimizing the Total Number of Nonzero Elements in EFI 22
2.6 Storage and Use of the Elimination Form of Inverse 30
2.7 Bibliography and Comments 31

Chapter 3. Additionzal Methods for Minimizing the Storage for EFI

3.1 Introduction 33
3.2 Methods Based on A Priori Column Permutations 34
3.3 Desirable Forms for Gaussian Elimination 40
3.4 Matrices and Graphs 41
3.5 The Block Diagonal Form | 45
3.6 The Block Triangular Form 50
3.7 The Band Triangular Form 60
3.8 The Band Form 66
3.9 Other Desirable Forms . 75
3.10 Inverses of BTF and BBTF 79
3.11 Bibliography and Comments 80

Chapter 4. Direct Triangular Decomposition

4.1 Introduction 83
4.2 The Crout Method 84
4.3 Minimizing the Fill-in for the Crout Method 87
4.4 The Doolittle (Black) Method 90
4.5 The Cholesky (Square-Root, Banachiewicz) Method 91
4.6 Desirable Forms for Triangular Decomposition 93
4.7 Bibliography and Comments 94

Chapter 5. The Gauss-Jordan Elimination

5.1 Introduction 95
5.2 The Basic Method 96
5.3 The Relationship between the PFI and the EFI 97
5.4 Minimizing the Total Number of Nonzeros in the PFI 101
5.5 Desirable Forms for the GJE 105
5.6 Bibliography and Comments 105

Chapter 6. Orthogonalization Methods

6.1 Introduction 107
6.2 The Gram-Schmidt Method 107

e

ol

Contents

6.3
6.4
6.5
6.6
6.7

Minimizing the Nonzeros in the RGS Method
The Householder Triangularization Method
The Fill-in for the RGS versus the HT Method
The Jacobi Method

Bibliography and Comments

Chapter 7. Eigenvalues and Eigenvectors

7.1
7.2
73
74
7.5
7.6

Introduction

The Givens Method

The Householder Method
Reduction to the Hessenberg Form
Eigenvectors

Bibliography and Comments

Chapter 8. Change of Basis and Miscellaneous Topics

8.1
8.2
8.3
84
8.5

Introduction

The Result of Changes in a Column of 4 on 4"
Kron's Method of Tearing

Bifactorization

Bibliography and Comments

References

Author Index
Subject Index

109
114
117
118
121

123
124
127
129
132
132

133
134
138
139
140

141

153
157

CHAPTER
I

Preliminary Considerations

1.1. Introduction

In this introductory chapter, we shall first mention some of the
areas of application in which sparse matrices occur and then describe
some commonly used schemes for storing such large sparse matrices
in the computer (internal and/or external storage). A simple method
of scaling matrices in order to keep round-off errors small is also
given. The chapter ends with a bibliography and related comments.

1.2. Sparse Matrices

A matrix having only a small percentage of nonzero elements is said
to be sparse. In a practical sense an n x n matrix is classified as sparse

/

2 1 Preliminary Considerations

if it has order of n nonzero elements, say two to ten nonzero elements
in each row, for large n. The matrices associated with a large class of
man-made systems are sparse. For example, the matrix representing
the communication paths of the employees in a large organization is
sparse, provided that the ith row and the jth column element of the
matrix is nonzero if and only if employees i and j interact. Sparse
matrices appear in linear programming, structural analyses, network
theory and power distribution systems, numerical solution of differen-
tial equations, graph theory, genetic theory, social and behavioral
sciences, and computer. programming.

The current interest in, and attempts at the formulation and solution
of problems in the social, behavioral, and environmental sciences (in
particular as such problems arise in large urban areas ; see, for example,
Rogers, 1971) will in many cases lead to large sparse systems. If such
systems are nonlinear, then their linearization—often the first step
towards the solution—will result in still larger sparse systems.

Often, interesting and important problems cannot be solved because
they lead to large matrices which either are impossible to invert on
available computer storage or are very expensive to invert. Since such
matrices are generally sparse it is useful to know the techniques
currently available for dealing with sparse matrices. This allows one to
choose the best technique for the type of sparse matrix he encounters.
The time and effort required to develop the various techniques for
handling sparse matrices is especially justified when several matrices
having the same zero—nonzero structures but differing numerical
values have to be handled. This occurs in many of the application areas
already mentioned.

1.3. Packed Form of Storage

Large sparse matrices are generally stored in the computers in
packed form; in other words, only the nonzero elements of such
matrices with the necessary indexing information are stored. There are
four reasons for utilizing the packed form of storage. First, larger

1.3. Packed Form of Storage 3

matrices can be stored and handled in the internal storage of the
computer than is otherwise possible. Second, there are cases when the
matrix even in packed form does not fit in the internal storage (for
example, in time sharing) and external storage (for example, tapes or
discs) must be used. Generally, getting the data from the external
storage is much slower than internal computations involving such
data, therefore, the packed form is preferred for the external storage
also. Third, a substantial amount of time is saved if operations involving
zeros are not performed; this is done by symbolic processing in which
only the nontrivial operations are carried out. This is often the only
way in which large matrices can be reasonably handled. Fourth, it
turns out that the inverse of a given matrix expressed as a product of
elementary matrices (only the nontrivial elements of such matrices are
stored in packed form) usually needs less storage than the explicit
inverse of the matrix in packed form. Such factored forms of inverses
are particularly advantageous when they are later used for multiplying
several row and column vectors, in linear programming, for example.

There are various packing schemes available, some of which are
described below; these have been found efficient and are incorporated
in computer codes. ,

Let 4 be a square matrix of order n with T nonzero elements, where
T « n?, then A is clearly sparse. Let the ith row and the jth column
element of 4 be denoted by a;;. In order to store only the nonzero
elements a;; # 0, we need to store i, j and a;;. If one cell of the storage
is used for each of these quantities, then a total of 37 cells will be needed
to store all the nonzero elements of 4. Evidently, 37 should be sub-
stantially less than n? to make it worthwhile to spend the extra effort
and computing time involved in packing. :

In many algorithms that transform A to some other desirable form,
additional nonzero elements are created in the various steps of the
computations. Therefore, in the packed storage some provision has to
be made to add new nonzero elements to the various columns (or
rows) of A as the computation proceeds and the elements get changed.
The ideal storage would be one which minimizes both the total storage
used and the total computation time. In general, the two requirements,
minimum storage and minimum time, are incompatible and a trade-off
must be made.

4 1 Preliminary Considerations

UTILIZATION OF LINKED LISTS IN PACKING

One way of storing the nonzero elements of the given sparse matrix A
is by making use of linked lists as follows. Each nonzero element g;; is
stored as an item in its column j (see Fig. 1.3.1). An item is an ordered

Address Next item
of in column
the item ‘ ‘~ if any
Value of the Address of next item
Row index element (Zero if last item)
/ a p or O

Fig. 1.3.1. The item corresponding to a;;.

triple (i, a, p), where i is the row index, a the value of the element a;; and p
is the address of the next nonzero element of column j. The address p is
zero if the item corresponds to the last nonzero element of the column.
The total storage consists of two parts, BC (Beginning of Column
address) and SI (Storage for Items). The first part BC has »n contiguous
locations, each of which contains the starting address of the first item
of the corresponding column. For example, the jth cell of BC has the
starting address SI(x) of the item associated with the first nonzero
element in column j (see Fig. 1.3.2). SI, the second part, consists of all
iterns associated with the nonzero elements of 4. Since 4 has t nonzero
elements and to each element there corresponds an item which is three

SI{a)

| 1

SZ % Sl{a &\ ijo | p ‘\\
N
BC S

Fig. 1.3.2. Linked lists packed storage.

1.3. Packed Form of Storage -5

elements long, SI will require 3t storage locations, which need not be
necessarily contiguous. Therefore, if we use linked lists, a total of
n + 3t storage locations is required to store the given matrix A4 in
packed form.

The principal advantage of this storage scheme is that during the
computations nonzero elements created in the columns can be easily
stored in SI; there is no need to move down all the following elements,
as would be the case in the usual storage scheme when a new element is
inserted. Furthermore, the cells in SI need not be contiguous, as long as
they are in groups which are divisible by 3.

Let us give a simple example showing how the creation of a new
nonzero element affects BC and SI. Suppose, a,; = a;; = 0,a,, = 0.5,
and a,; = 1.5; the storage for BC begins at location 101, and the items
corresponding to a,; and a,, begin at locations 200 and 203 respec-
tively. If later on a,; changes from zero to nonzero (say 2.5), and the
corresponding item is to be stored starting at location 300, then the
relevant changes can be exhibited as follows:

Location 103 200 201 202 203 204 300 301 302

Present contents 200 2 05 203 4 1.5 — - —
New contents 200 2 05 300 4 1.5 3 25 203

Thus, in the existing matrix storage only the contents of location 202
had to be modified in order to add a new nonzero element. However, if
instead of a;, a, , became nonzero (say 3.5)and the corresponding item
was stored (as before) starting at location 300, then we would have the
following.

Location 103 200 201 202 203 204 300 301 302

Present contents 200 2 05 203 4 L5 - — —
New contents 300 2 05 203 4 15 1 35 200

In either case, it is evident that the contents of only one location in the
original linked list have to be modified to insert a new nonzero element.

If during the computations some nonzero element becomes zero,
then the storage so released by the corresponding item can be used for
storing the items associated with new nonzero elements. The starting

6 1 Preliminary Considerations

addresses of such items which are available for storage can be main-
tained as a chained list by using the third cell of each item. Only the
address of the first available item storage has to be noted elsewhere.
The third cell of each available item storage contains the starting address
of the néxt available storage item. If it is the last available item storage,
then its third cell is zero. When a new item becomes available for
storage it is added to the top of the list. Similarly, available items from
the top of the list are used for storing new items.

Let us consider two simple examples to illustrate the above tech-
niques. Suppose two items for storage were available, their starting
addresses were, respectively, 101 and 201, and we want to add another
available item storage starting at 301 to this list. If location 50 contains
the address of the first available item storage, then the appropriate
changes are shown below.

Location 50 10t 102 103 201 202 203 30t 302 303

Present contents 101 — — 201 = — @ — o - - -
New contents 301 — — 201 —_ - o — — 101

On the other hand, to store a new item, we use the first available item
storage in the above list, namely, locations 301, 302, and 303, and then
change the contents of the various locations in the preceding table to the
line labeled as present contents. A

Sometimes methods of packing which do not use linked lists are
useful. They use less storage, but additional nonzero elements can be
introduced only by relocating all the succeeding elements, that is, by
moving them down. These schemes are suitable when only a small
portion of the matrix can be stored in thé internal storage of the
computer at one time and a large amount of time would therefore be
required to transfer the data to and from the external storage. We
shall now describe four such schemes and show how a matrix 4,
whose nonzero elements are a,,,4,,,4ds,,a,3,0;3,4a,,, and a,, is
stored according to the first three schemes. The last scheme is for
symmetric matrices and therefore another matrix is utilized there. In
the first three schemes the matrix is stored by columns but in the last
one it is stored by rows.

1.3. Packed Form of Storage 7

SCHEME 1

To each nonzero element of the matrix there corresponds an item of
two storage cells. The first storage cell contains the row index and the
second the value of the element. A zero row index in an item denotes
the end of the current column. The second cell of such an item contains
the index of the next column. Zeros in both cells of an item denote the
end of the matrix storage. Thus there are n + 7 + 1 items in all, n for
the columns, for the nonzero elements of 4, and 1 to denote the end of .
the matrix storage. As each item uses two storage locations, a total of
2(n + t + 1) locations will be required to store A.

The matrix A for which r = 7 and n = § is stored as the array

0,1; 2,a,,;4,84,;0,2; 5,a5,; 0,3; 1,a,5; 3,a35; 0,4; 2,a,450,5;
4,a,s; 0,0).

SCHEME 11

The information about the given matrix is stored in three arrays:
VE (Value of Elements), RI (Row Indices), and CIP (Column Index
Pointer). RI(a), the ath element of RI, contains the row index of the
corresponding element VE(x) of VE. If the first nonzero element of the
Bth column of the given matrix is in VE(t,) then ¢, is stored in the fth
element of CIP, namely, CIP(f) = t,. It is evident that VE and RI each
has 7 elements but CIP has n elements. Thus 2t + n storage cells will be
required in this scheme.

The storage for A, is as follows:

VE = (a5, 44,053,835, a33, 04, ay5),
RI=(2 4 5 1, 3 2 49,
CIP=(1, 3, 4, 6, 7).
The above storage scheme is easy to use. For example, a,, can be
recovered as follows. Since CIP(3) = 4, RI(4) gives the row index of

the first nonzero element of column 3. Then RI(4), or one of the
succeeding elements of RI prior to the first nonzero element of column

