Approximation Methods for Electronic Filter Design

With Applications to Passive, Active, and Digital Networks By Richard W. Daniels, Ph.D.

Approximation Methods for Electronic Filter Design

With Applications to Passive, Active, and Digital Networks

Richard W. Daniels, Ph.D.

Bell Telephone Laboratories, Inc.

McGRAW-HILL BOOK COMPANY

New York St. Louis San Francisco Düsseldorf Johannesburg Kuala Lumpur London Mexico Montreal New Delhi Panama Paris São Paulo Singapore Sydney Tokyo Toronto

Library of Congress Cataloging in Publication Data

Daniels, Richard W, date.

Approximation methods for electronic filter design.

Includes bibliographies.

1. Electric filters. 2. Approximation theory.

I. Title.

TK7872.F5D36

621.3815'32

74-8091

ISBN 0-07-015308-6

Copyright © 1974 by Bell Telephone Laboratories, Incorporated. All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

1234567890 KPKP 7987654

The editors for this book were Tyler G. Hicks and Stanley E. Redka, the designer was Naomi Auerbach, and its production was supervised by George E. Oechsner. It was set in Modern 8A by Bi-Comp, Inc.

It was printed and bound by The Kingsport Press.

Preface

This book was written to help fill a void that exists in the literature of filter theory. There are many electrical-engineering books that can be used to help synthesize passive, active, or digital filters; however, there is no satisfactory book that treats the approximation problem from the viewpoint of an electrical engineer—and the approximation problem must be solved before one can synthesize a filter. This book is concerned with finding approximations for attenuation and delay functions; the approximations are ratios of polynomials, and the polynomials are expressed in terms of the frequency variable s.

There are many approximation books written by mathematicians, but these are not directly applicable to filter design. Although some filter-synthesis books devote a chapter to the approximation problem, this is not nearly enough for a comprehensive treatment. Thus, electrical engineers have had to read many articles to become familiar with the approximation problem. This book presents various solutions to the problem in an organized and logical manner.

The first few chapters are concerned with what might be termed the classical approximation theory: they discuss Butterworth, Tschebycheff, inverse Tschebycheff, and elliptic filters. These chapters apply to low-pass filters; Chapter 6 presents transformations that can be used for other types of filters.

Chapter 7 discusses a special transformation. It introduces filter design in terms of the transformed variable and serves as a bridge between classical approximation theory and modern approximation theory. Modern approximation theory makes use of the transformed variable because it provides computational accuracy and simplifies many derivations. The transformed variable is used in Chapters 8 through 12 to investigate filters that have arbitrary stopbands and either equiripple or maximally flat passbands.

After treating approximations for magnitude response, the book discusses delay and transient response. Chapters 14 and 15 contain formulas that can be used to calculate the delay and transient response for any of the filters mentioned in previous chapters.

The remaining chapters discuss methods for synthesizing the transfer functions obtained in the first part of the book. Chapter 16 treats passive network synthesis, Chapter 17 active filter synthesis, and Chapter 18 digital filter synthesis. This material emphasizes the fact that the transfer functions obtained in the book are not just mathematical abstractions; networks can be constructed to perform these filtering functions.

Modern approximation theorists utilize computers to help solve their problems; therefore it seemed essential to include a substantial number of programs in the book. The programs were written in Telcomp II because that language contains statements that are easy to understand. It is not expected that the reader will ever program in Telcomp, but he should be able to write similar programs in other languages. An appendix discusses Telcomp II in enough detail so that the programs in this book can be comprehended.

Problems have been included at the ends of most chapters for two reasons: First, they can help test the reader's comprehension of the material and thus serve as a learning aid. Second, many of the problems are used to establish results that appear in the text. This approach keeps lengthy proofs from cluttering up the presentations. Answers to selected problems are given at the end of the text.

The working environment at Bell Telephone Laboratories helped make this book possible. There were numerous stimulating discussions with colleagues, and most of the material in the book was taught in a course to fellow employees. Special thanks are due them for their valuable comments and suggestions, as well as to the many people who helped prepare the manuscript.

Finally, to my wife and children, who found out firsthand how much time is required to write a book of this nature, my appreciation for your patience and understanding.

Richard W. Daniels

Symbols

```
\boldsymbol{A}
         attenuation, loss
A_i
         attenuation to the right of FS_i
A_{\text{max}}
         maximum passband loss
         minimum stopband loss
A_{\min}
         attenuation of ith arc at frequency F_{\min}
Amin.
B_n
         nth-order Butterworth polynomial
cn
         elliptic cosine function
C_H
         constant multiplier of H
dn
         elliptic difference function
D
         delay
D_{\min_i}
         minimum difference (excess attenuation) of the ith arc
D(Z)
         polynomial that determines the loss minimums of aros
D(\omega)
         delav
e
         numerator of H, as in H(s) = e(s)/q(s)
e.
         even part of e(s)
         odd part of e(s)
e_o
\mathbf{E}\mathbf{v}
         even part of
E(Z)
         transformed version of e(s)
E^*(Z)
         transformed version of e(-s)
f
         frequency
         numerator of K, as in K(s) = f(s)/g(s)
f
f_e
         even part of f(s)
```

xvi Symbols

```
location of ith attenuation pole
 f_i
          odd part of f(s)
 f_o
 F
          frequency
 FA
          lower passband edge
 \mathbf{F}\mathbf{B}
          upper passband edge
 FH
          upper stopband edge
 FL
          lower stopband edge
 F_{\min}
         frequency at which ith arc is closest to the requirement
 FS_i
          ith attenuation step
 F(Z)
          transformed version of f(s)
 H
          transfer function (ratio of input to output)
i(t)
          impulse response
 IA
          image attenuation
 H.
          insertion loss
 IP
          integer part of
 i
          \sqrt{-1}
 k
          modulus of the elliptic integral
 k'
          complementary modulus of the elliptic integral
 К
          characteristic function, complete elliptic integral
 ۲,
         complementary complete elliptic integral
 K_{\min}
          minimum stopband value of K(s)
         minimum stopband value of |R_n(x,L)|
 L
 L(Z)
         loss function
 m
         a parameter defined by m = NZ + NIN + 2N
 н
         indicates degree of a filter, polynomial etc.
 A.
          number of attenuation poles (excluding those at zero and infinity)
 NA
         number of poles in lower stopband
 NB
         number of poles in upper stopband
 NIN
         number of attenuation poles at infinite frequency
 NZ
         number of attenuation poles at zero frequency
 ₽
         parametric multiplier
 P_0
         power dissipated in load when coupling network is replaced by a short
         circuit
 P_{\perp}
         power delivered to coupling network
 P_{\gamma}
         power dissipated in load
 P_{m}
         maximum available power
 P.
         reflected power
         denominator of H(s), as in H(s) = e(s)/q(s)
 q
 Q
         quality of a root
 Q_{\nu}
         quality of a pole
 Q_z
         quality of a zero
 Q(Z)
         transformed version of q(s)
 R_c
         relative change in ripple
 R_n
         nth-order Tschebycheff rational function
         complex frequency s = \sigma + j\omega
 s
sn
         elliptic sine function
S
         normalized complex frequency
```

```
SA
          number of attenuation steps in lower stopband
SB.
          number of attenuation steps in upper stopband
\boldsymbol{T}
          sampling time
T
          transfer function (ratio of output to input)
T_1
          reflection function
          nth-order Tschebycheff polynomial
T_n
          elliptic integral of the first kind
u
V_0
          load voltage when coupling network is replaced by a short circuit
V_1
          voltage at input of coupling network
V_{\bullet}
          load voltage
          the first value of x at which R_n(x,L) = L
x_L
\boldsymbol{V}
         admittance
z
          variable of the Z transformation (z = e^{sT})
\boldsymbol{Z}
         impedance
Z_1
         input impedance of coupling network
Z_{fi}
         transformed version of \omega_{t}
         transformed version of f_i
Z_i
ZF_i
         ith zero of H(s)
ZQ_i
         quality of the ith zero of H(s)
         attenuation function, parametric constant
α
В
         phase function
\beta_i
         angle of a typical term of L(Z)
\delta(t)
         unit impulse function
ε
         a constant uniquely determined by A_{max}
         real part of complex frequency s
φ
         amplitude of the elliptic integral
         imaginary part of complex frequency s
43
         lower passband edge
\omega_{\rm A}
         upper passband edge
\omega_{\rm R}
         upper stopband edge
\omega_{\rm H}
         ith attenuation pole
\omega_i
         lower stopband edge
\omega_{\rm L}
         frequency of maximum flatness, critical frequency
\omega_0
         sampling frequency
\omega_s
```

imaginary part of complex frequency S

Ω

	schebycheff - proximation	TEAT	
	or not plan 1		
	The supplement of the suppleme		
	CS Land and seapper low pass in the CS Land and seapper low as		
	Introduction of Pediabychelt pulminante 23		
	To being any long from the facility of the		
	the same state of the same same		
	g de la madiliana a con		
Co	ntents in seld was not seld first by san out to a magning A-	2.7	
00	An artimus secretly of Tark and there 36		
	We a ror the 'le neby helf apparent is '16		
	Cl strang primiting (
	It salvana in		
	nverse Tschebycheff Filter	The f	Δ.
	Introduction 43	1.1	
	Manipulation of Tschebycheff characteristics 45	4.3	
	Maximally flat property of the inverse Tsenel yeard fifter the	4.3	
	Determination of inverse Tachebyehell loss	4.4	
	Determination of degree of the in aree Tarbet years! Offer 46	4.5	
	A program for the loss of inverse Tschehycheff lowpass filters. A	4.6	
	Concluding remarks 48	4.7	
	ic Filters	A STEEL S	
	C- grade to all	and the	
Prefa	de xiii	1.6	
Symi	Introduction to Tschebycheff muonal functions 52	2.6	
· · · · · · · · · · · · · · · · · · ·	A basic form for $H_{\pi}(x, L)$. 9.1		4
	A differential equation for $R_n(\epsilon,L)=58$	5.4	
1 1	The elliptic integral of the first kind 69	6.0	
1. Intro	duction	70.7	1
1.1	Approximation theory amalan singillo add not anot ovitamenta aA-	7.0	
1.2	Filter jargon 2 (d,x), A bas snortener august	8.6	
1.3	Realizations 4 00 (A, x, A) of seriodic rectangle for $R_{+}(x, A)$ 00	0.6	
1.4	- Je - Craffic Charles 101115	5.10	
	REFERENCES 6 6 61 d to softenismissoft	Hit	
	A rational expression for $R_n(r,L) = 75$	5.12	
2. The E	Butterworth Approximation are lift seaq well oldgille not managing A	5.13	7
2.1	Introduction 7 18 shares gridulous 7	41.6	
2.2	The characteristic function 7		
2.3	The lowpass characteristic function 8 68 88 318089		
2.4	Butterworth polynomials 9		
8 2.5	Butterworth lowpass filters 10 anoissmyolans II vone	Frequ	.8
2.6	Determination of degree of $B_{\sigma}(\omega) = 11$		
2.7	H(s) for the Butterworth approximation 12 38 noils about 1	1.0	
2.8	Quality of Butterworth roots 124 120 and ol-san wol-besile man	2.0	
2.9	Conclusions 18 18 non-autolenest seequant-or-seequest	6.3	
	REFERENCES 18 86 notemioleanit secobasti-of-secovod	6.4	

PROBLEMS

0.5 Lowpass-to-bankton transformation

viii Contents

3. The	Tschebycheff Approximation	20
3.1	Introduction 20	
3.2	Equiripple approximations 21	
3.3	The Tschebycheff lowpass approximation 23	
3.4	Introduction to Tschebycheff polynomials 25	
3.5	The Tschebycheff polynomial 27	
3.6	The normalized Tschebycheff lowpass 30	
3.7	Determination of degree of $T_n(x) = 33$	
3.8	A program for the loss of Tschebycheff lowpass filters 34	
3.9	An optimum property of Tschebycheff filters 36	
3.10	H(s) for the Tschebycheff approximation 36	
3.11	Concluding remarks 40	
	REFERENCES 41	
	PROBLEMS 41	
4. The	Inverse Tschebycheff Filter	43
4.1	Introduction 43	
4.2	Manipulation of Tschebycheff characteristics 43	
4.3	Maximally flat property of the inverse Tschebycheff filter 45	
4.4	Determination of inverse Tschebycheff loss 45	
4.5	Determination of degree of the inverse Tschebycheff filter 46	
4.6	A program for the loss of inverse Tschebycheff lowpass filters 47	
4.7	Concluding remarks 48	
5 Filini		
•	tic Filters	51
5.1	Introduction 51	51
5.1 5.2	Introduction 51 Introduction to Tschebycheff rational functions 52	51
5.1 5.2 5.3	Introduction 51 Introduction to Tschebycheff rational functions 52 A basic form for $R_n(x,L)$ 55	51
5.1 5.2 5.3 5.4	Introduction 51 Introduction to Tschebycheff rational functions 52 A basic form for $R_n(x,L)$ 55 A differential equation for $R_n(x,L)$ 58	51
5.1 5.2 5.3 5.4 5.5	Introduction 51 Introduction to Tschebycheff rational functions 52 A basic form for $R_n(x,L)$ 55 A differential equation for $R_n(x,L)$ 58 The elliptic integral of the first kind 59	51
5.1 5.2 5.3 5.4 5.5 5.6	Introduction 51 Introduction to Tschebycheff rational functions 52 A basic form for $R_n(x,L)$ 55 A differential equation for $R_n(x,L)$ 58 The elliptic integral of the first kind 59 Elliptic functions 62	51
5.1 5.2 5.3 5.4 5.5 5.6 5.7	Introduction 51 Introduction to Tschebycheff rational functions 52 A basic form for $R_n(x,L)$ 55 A differential equation for $R_n(x,L)$ 58 The elliptic integral of the first kind 59 Elliptic functions 62 An alternative form for the elliptic integral 66	51
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Introduction 51 Introduction to Tschebycheff rational functions 52 A basic form for $R_n(x,L)$ 55 A differential equation for $R_n(x,L)$ 58 The elliptic integral of the first kind 59 Elliptic functions 62 An alternative form for the elliptic integral 66 Elliptic functions and $R_n(x,L)$ 68	51
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	Introduction 51 Introduction to Tschebycheff rational functions 52 A basic form for $R_n(x,L)$ 55 A differential equation for $R_n(x,L)$ 58 The elliptic integral of the first kind 59 Elliptic functions 62 An alternative form for the elliptic integral 66 Elliptic functions and $R_n(x,L)$ 68 The periodic rectangle for $R_n(x,L)$ 69	51
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Introduction 51 Introduction to Tschebycheff rational functions 52 A basic form for $R_n(x,L)$ 55 A differential equation for $R_n(x,L)$ 58 The elliptic integral of the first kind 59 Elliptic functions 62 An alternative form for the elliptic integral 66 Elliptic functions and $R_n(x,L)$ 68 The periodic rectangle for $R_n(x,L)$ 69 Determination of degree of elliptic filters 72	51
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	Introduction 51 Introduction to Tschebycheff rational functions 52 A basic form for $R_n(x,L)$ 55 A differential equation for $R_n(x,L)$ 58 The elliptic integral of the first kind 59 Elliptic functions 62 An alternative form for the elliptic integral 66 Elliptic functions and $R_n(x,L)$ 68 The periodic rectangle for $R_n(x,L)$ 69 Determination of degree of elliptic filters 72 Determination of L 73	51
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Introduction 51 Introduction to Tschebycheff rational functions 52 A basic form for $R_n(x,L)$ 55 A differential equation for $R_n(x,L)$ 58 The elliptic integral of the first kind 59 Elliptic functions 62 An alternative form for the elliptic integral 66 Elliptic functions and $R_n(x,L)$ 68 The periodic rectangle for $R_n(x,L)$ 69 Determination of degree of elliptic filters 72 Determination of L 73 A rational expression for $R_n(x,L)$ 75	51
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12	Introduction 51 Introduction to Tschebycheff rational functions 52 A basic form for $R_n(x,L)$ 55 A differential equation for $R_n(x,L)$ 58 The elliptic integral of the first kind 59 Elliptic functions 62 An alternative form for the elliptic integral 66 Elliptic functions and $R_n(x,L)$ 68 The periodic rectangle for $R_n(x,L)$ 69 Determination of degree of elliptic filters 72 Determination of L 73 A rational expression for $R_n(x,L)$ 75	51
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13	Introduction 51 Introduction to Tschebycheff rational functions 52 A basic form for $R_n(x,L)$ 55 A differential equation for $R_n(x,L)$ 58 The elliptic integral of the first kind 59 Elliptic functions 62 An alternative form for the elliptic integral 66 Elliptic functions and $R_n(x,L)$ 68 The periodic rectangle for $R_n(x,L)$ 69 Determination of degree of elliptic filters 72 Determination of L 73 A rational expression for $R_n(x,L)$ 75 A program for elliptic lowpass filters 78	51
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13	Introduction 51 Introduction to Tschebycheff rational functions 52 A basic form for $R_n(x,L)$ 55 A differential equation for $R_n(x,L)$ 58 The elliptic integral of the first kind 59 Elliptic functions 62 An alternative form for the elliptic integral 66 Elliptic functions and $R_n(x,L)$ 68 The periodic rectangle for $R_n(x,L)$ 69 Determination of degree of elliptic filters 72 Determination of L 73 A rational expression for $R_n(x,L)$ 75 A program for elliptic lowpass filters 78 Concluding remarks 81	51
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14	Introduction 51 Introduction to Tschebycheff rational functions 52 A basic form for $R_n(x,L)$ 55 A differential equation for $R_n(x,L)$ 58 The elliptic integral of the first kind 59 Elliptic functions 62 An alternative form for the elliptic integral 66 Elliptic functions and $R_n(x,L)$ 68 The periodic rectangle for $R_n(x,L)$ 69 Determination of degree of elliptic filters 72 Determination of L 73 A rational expression for $R_n(x,L)$ 75 A program for elliptic lowpass filters 78 Concluding remarks 81 REFERENCES 83	51
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14	Introduction 51 Introduction to Tschebycheff rational functions 52 A basic form for $R_n(x,L)$ 55 A differential equation for $R_n(x,L)$ 58 The elliptic integral of the first kind 59 Elliptic functions 62 An alternative form for the elliptic integral 66 Elliptic functions and $R_n(x,L)$ 68 The periodic rectangle for $R_n(x,L)$ 69 Determination of degree of elliptic filters 72 Determination of L 73 A rational expression for $R_n(x,L)$ 75 A program for elliptic lowpass filters 78 Concluding remarks 81 REFERENCES 83 PROBLEMS 83	
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14	Introduction 51 Introduction to Tschebycheff rational functions 52 A basic form for $R_n(x,L)$ 55 A differential equation for $R_n(x,L)$ 58 The elliptic integral of the first kind 59 Elliptic functions 62 An alternative form for the elliptic integral 66 Elliptic functions and $R_n(x,L)$ 68 The periodic rectangle for $R_n(x,L)$ 69 Determination of degree of elliptic filters 72 Determination of L 73 A rational expression for $R_n(x,L)$ 75 A program for elliptic lowpass filters 78 Concluding remarks 81 REFERENCES 83 PROBLEMS 83 Introduction 86	
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14	Introduction 51 Introduction to Tschebycheff rational functions 52 A basic form for $R_n(x,L)$ 55 A differential equation for $R_n(x,L)$ 58 The elliptic integral of the first kind 59 Elliptic functions 62 An alternative form for the elliptic integral 66 Elliptic functions and $R_n(x,L)$ 69 The periodic rectangle for $R_n(x,L)$ 69 Determination of degree of elliptic filters 72 Determination of L 73 A rational expression for $R_n(x,L)$ 75 A program for elliptic lowpass filters 78 Concluding remarks 81 REFERENCES 83 PROBLEMS 83 Introduction 86 Normalized-lowpass-to-unnormalized-lowpass transformation 86	
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14	Introduction 51 Introduction to Tschebycheff rational functions 52 A basic form for $R_n(x,L)$ 55 A differential equation for $R_n(x,L)$ 58 The elliptic integral of the first kind 59 Elliptic functions 62 An alternative form for the elliptic integral 66 Elliptic functions and $R_n(x,L)$ 68 The periodic rectangle for $R_n(x,L)$ 69 Determination of degree of elliptic filters 72 Determination of L 73 A rational expression for $R_n(x,L)$ 75 A program for elliptic lowpass filters 78 Concluding remarks 81 REFERENCES 83 PROBLEMS 83 Introduction 86	

6.6		
6.7		
6.8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
6.9	•	
	REFERENCES 106	
	PROBLEMS 106	
7. The	Transformed Variable	108
7.1	Introduction 108	
7.2		
7.3	Functions in terms of the transformed variable 111	
7.4	F(Z) and $Q(Z)$ for lowpass filters 114	
7.5	The inverse transformation 116	
7.6	Conclusions 119	
	REFERENCES 120	
	PROBLEMS 120	
R Atte	nuation Poles for Equiripple Passband Filters	122
o. Atto	mation 1 ords for Equilippie 1 assuand 1 liters	162
8.1	Introduction 122	
8.2		
8.3		
8.4		
8.5	· · · · · · · · · · · · · · · · · · ·	
8.6		
8.7		
8.8		
8.9		
8.10		
8.11	, and the same of	
8.12		
8.13	J - F F S	
8.14	r · · · · · · · · · · · · · · · · · · ·	
$8.15 \\ 8.16$	real frame frame frame frame	
8.10	The second secon	
8.18	, 1 - 1 - F - 6	
0.10	REFERENCES 154	
	PROBLEMS 154	
9. The	Characteristic Function for Equiripple Passband Filters	156
9.1	Introduction 156	
9.2	The characteristic function and the transformed variable 156	
9.3	Determination of $Q^2(Z) = 158$	
9.4	Determination of $F^2(Z) = 158$	
9.5	Determination of $Q^2(Z)$ and $F^2(Z)$ for lowpass filters 161	
9.6		
9.7	Stopband performance 165	
9.8	Passband performance 166	
	PROBLEMS 170	

x Contents

10.	Natura	al Modes for Equiripple Passband Filters	172
	10.1 10.2 10.3 10.4 10.5 10.6	Introduction 172 $H(s)$ and the transformed variable 173 Determination of $E(Z)E^*(Z)$ 174 Determination of natural modes of equiripple lowpass filters Conclusions 183 REFERENCE 183 PROBLEMS 183	
11.	Maxim	rally Flat Passbands	185
	11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8	Introduction 185 Determination of the characteristic function 186 Determination of $Q^2(Z)$ and $F^2(Z)$ for lowpass filters 189 Stopband and passband performance 192 Determination of attenuation poles for maximally flat filters 193 Natural modes for maximally flat passband filters 202 Comparison of maximally flat and equiripple filters 202 Conclusions 207 REFERENCES 207 PROBLEMS 208	
12.	Param	etric Filters	210
	12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10	Introduction 210 The basic trick 211 Addition of a pole at infinity 211 Addition of a pole at the origin 214 Stopband and passband performance 215 Determination of attenuation poles for parametric filters 218 Results from the pole-placer program 221 Parametric lowpass filters 223 Natural modes for parametric filters 224 Conclusions 227 REFERENCES 227 PROBLEMS 227	
13.	Optimi	zation Techniques for Approximation Theory	229
	13.1 13.2 13.3 13.4 13.5 13.6	Introduction 229 System response and error criteria 230 Initial parameters 232 Minimization techniques 232 Practical optimization programs for the approximation problem 234 Arbitrary passband, equiminimum stopband 234 REFERENCES 237	<u>.</u>
14.	Delay a	and Related Subjects	238
	14.1 14.2	Introduction 238 Definition of delay 238	

	14.0	Calculation of delay 240	
	14.4	A program for the calculation of delay 241	
	14.5	Relations between magnitude and delay 244	
	14.6.	The Hilbert transformations 248	
	14.7	The Bessel approximation 249	
	14.8	The Gaussian magnitude approximation 256	
	14.9	Transitional Butterworth-Thomson filters 259	
	14.10	Tschebycheff approximation of constant delay 260	
	14.11	Delay considerations for bandpass filters 261	
	14.12	Addition of attenuation poles 264	
	14.13	Amplitude equalizers 265	
	14.14	Allpass networks 268	
	14.15	Allpass networks derived from lowpass delay approximations 272	
	14.16	Conclusions 275	
		references 275	
		PROBLEMS 277	
15.	Time-l	Domain Response	282
	15.1	Introduction 282	
	15.2	Definition of terms 283	
	15.3	Transient response and the Laplace transformation 284	
	15.4	Partial fractions and the inverse Laplace transformation 285	
	15.5	Taylor series and the inverse Laplace transformation 286	
	15.6	Comparison of transient response 289	
		REFERENCES 290	
		PROBLEMS 290	
16	A	viruntian Mathada and Passina Naturalle Conthesia	292
10.	Approx	timation Methods and Passive Network Synthesis	234
	16.1	Introduction 292	
	16.2	Insertion loss 293	
	16.3	The transmission function $H(s) = 294$	
	16.4	The reflection function $T_1(s) = 298$	
	16.5	The lossless coupling network 300	
	16.6	Synthesis of the lossless coupling network 302	
	16.7	The zero-shifting technique 303	
	16.8	Typical network configurations 307	
	16.9	Synthesis in terms of the transformed variable 311	
	16.10	Conclusions 314	
		REFERENCES 315	
		PROBLEMS 315	
		*	
17.	Approx	cimation Methods and Active Filter Synthesis	319
	17.1	Introduction 319	
	17.2	Negative-impedance-converter active filters 320	
	17.3	Gyrator active filters 322	
		•	
	17.4	Second-order transfer functions 324	
	17.4 17.5		
	17.4 17.5 17.6	Decomposition into second-order transfer functions 328	

xii	xii Contents		
	17.7 17.8	Coupled active filters 340 Conclusions 342 REFERENCES 344	
18.	Ap pro z	ximation Methods and Digital Filter Synthesis	346
	18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.9	Nonrecursive digital filters 350 Impulse-invariant method 350 Matched Z-transform method 355 Bilinear digital filters 357 Realizations for digital filters 363	
		A Telcomp 368	
	swers t	B Filter Design by the "Cookbook" Approach 373 o Selected Problems 377	

CHAPTER ONE

Introduction

1.1 APPROXIMATION THEORY

The mathematical discipline known as approximation theory is very general and contains many useful theorems. The books Theory of Approximation^{1,*} and Approximation Theory² may be examined by those interested in the niceties of this area of mathematics.

This book is not an attempt to treat approximation theory in general. Instead, the approximation problem is investigated from the viewpoint of an electrical engineer interested in designing filters. Thus, while the treatment is not elementary, neither does it become bogged down with mathematical details. For example, in discussing how to measure approximation errors, we will not become involved in a lengthy discussion of norms. We will, instead, use our time and energy to develop the approximation theory that is the basis for modern network-synthesis computer programs.

Network synthesis is used to find networks that will perform a desired task. For example, in an AM communication system it is usually necessary to synthesize networks that attenuate certain unwanted frequencies.

^{*} Superscript numbers indicate references listed at the end of the chapter.

2 Approximation Methods for Electronic Filter Design

The approximation problem of network synthesis refers to the determination of a system function that, when synthesized, will perform the desired task. There are usually many different approximating functions that could be used to solve a specific approximation problem; which one is "best" will depend on many factors, such as the complexity of the resulting network. Thus this book does not present a unique solution to the approximation problem; instead it offers tools that can be used by the engineer interested in filter design.

1.2 FILTER JARGON

This book is written from the viewpoint of a filter designer, and the material is described in terms commonly used by filter designers. Since some of the jargon might not be familiar to readers from other disciplines, this section provides a brief introduction to the terminology.

Most of the functions encountered in this book are expressed in terms of the complex frequency $s = \sigma + j\omega$. This is the variable commonly encountered in Laplace transformation theory; given a function v(t) (for example, a voltage that is a function of time), its Laplace transformation is defined as

$$V(s) = \int_0^\infty v(t)e^{st} dt = \mathfrak{L}[v(t)]$$
 (1.1)

A lowercase letter is usually used to denote a time-domain function, and an uppercase letter is employed for its Laplace transformation. For example, for currents one writes

$$I(s) = \mathcal{L}[i(t)] \tag{1.2}$$

An impedance is defined to be a voltage-to-current ratio and is always expressed in terms of the complex variable s. It is usually denoted by Z(s); that is,

$$Z(s) = \frac{V(s)}{I(s)} \tag{1.3}$$

The reciprocal of an impedance is defined to be an admittance:

$$Y(s) = \frac{I(s)}{V(s)} \tag{1.4}$$

All lumped network response functions—impedances, admittances, and dimensionless ratios—are rational functions of the complex variable s.⁶ This is the major reason for introducing the complex frequency s; it allows us to consider only rational functions and to employ our previous knowledge about such functions. For example, a transfer

function which is a ratio of voltages may be written as

$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{a_0 + a_1 s + a_2 s^2 + \cdots + a_m s^m}{b_0 + b_1 s + b_2 s^2 + \cdots + b_n s^n} = T(s)$$
 (1.5)

For this transfer function to represent a stable system, the denominator of T(s) must be Hurwitz; that is, the poles must be in the left half-plane.

If a transfer function is written in terms of the complex variable s, then it is very easy to investigate the steady-state response of the network. Consider a linear system that has an input which is a sinusoid of frequency ω :

$$v_{\rm in}(t) = \sin \omega t \tag{1.6}$$

The output will be a sinusoid of the same frequency:

$$v_{\text{out}}(t) = C \sin (\omega t + \phi) \tag{1.7}$$

The amplitude C and phase ϕ arise because, in general, the output of a network will not have the same amplitude or phase as the input. The ratio of the output amplitude to the input amplitude can be found by simply evaluating the transfer function T(s) at $s = j\omega$. Because $s = j\omega$ corresponds to a sinusoidal frequency, the letter ω is often said to represent real frequencies while the letter s is said to represent complex frequencies.

If the amplitude of a sinusoid at the output of a network is smaller than the amplitude at the input, then the signal is said to have been attenuated (i.e., it has encountered loss). The attenuation is usually expressed in terms of decibels (dB) as

$$A(\omega) \triangleq 20 \log \left| \frac{V_{\text{in}}(j\omega)}{V_{\text{out}}(j\omega)} \right|$$
 (1.8)

By our definition of the transfer function T(s), this can also be written as

$$A(\omega) = -20 \log |T(j\omega)| \tag{1.9}$$

In filter theory it is common practice to consider transfer functions that are ratios of input to output; i.e., we work with

$$H(s) = \frac{1}{T(s)} = \frac{b_0 + b_1 s + b_2 s^2 + \cdots + b_n s^n}{a_0 + a_1 s + a_2 s^2 + \cdots + a_m s^m}$$
(1.10)

$$=\frac{e(s)}{g(s)}\tag{1.11}$$

It follows that the attenuation can be expressed as

$$A(\omega) = 20 \log |H(j\omega)| \tag{1.12}$$