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Preface

This book was written to help fill a void that exists in the literature of
filter theory. There are many electrical-engineering books that can be
used to help synthesize passive, active, or digital filters; however, there
is no satisfactory book that treats the approximation problem from the
viewpoint of an electrical engineer—and the approximation problem must
be solved before one can synthesize a filter. This book is concerned with
finding approximations for attenuation and delay functions; the approxi-
mations are ratios of polynomials, and the polynomials are expressed in
terms of the frequency variable s.

There are many approximation books written by mathematicians, but
these are not directly applicable to filter design. Although some filter-
synthesis books devote a chapter to the approximation problem, this is
not nearly enough for a comprehensive treatment. Thus, electrical engi-
neers have had to read many articles to become familiar with the approxi-
mation problem. This book presents various solutions to the problem in
an organized and logical manner.

The first few chapters are concerned with what might be termed the
clussical approximation theory: they discuss Butterworth, TschebyehefT,
inverse Tschebycheff, and elliptic filters. These chapters apply to low-
puxs filters; Chapter 6 presents transformations that can be used for
other types of filters.

xiii



‘xiv Preface

Chapter 7 discusses a special transformation. It introduces filter
design in terms of the transformed variable and serves as a bridge
between classical approximation theery and modern approximation
theory. Modern approximation theory makes use of the transformed
variable because it provides computational accuracy and simplifies many
derivations. The transformed variable is used in Chapters 8 through 12
to investigate filters that have arbitrary stopbands and either equiripple
or maximally flat passbands. o

After treating approximations for magnitude response, the book dis-
cusses delay and transient response. Chapters 14 and 15 contain for-
mulas that can be used to calculate the delay and transient response for
any of the filters mentioned in previous chapters.

The remaining chapters discuss methods for synthesizing the transfer
functions obtained in the first part of the book. Chapter 16 treats
passive network synthesis, Chapter 17 active filter synthesis, and Chapter
18 digital filter synthesis. This material emphasizes the fact that the
transfer functions obtained in the book are not just mathematical abstrac-
tions; networks can be constructed to perform these filtering functions.

Modern approximation theorists utilize computers to help solve their
problems; therefore it seemed essential to include a substantial number
of programs in the book. The programs were written in Telcomp II
because that language contains statements that are easy to understand.
It is not expected that the reader will ever program in Telcomp, but he
should be able to write similar programs in other languages. An appendix
discusses Telcomp II in enough detail so that the programs in this book
cain be comprehended.

Problems have been included at the ends of most chapters for two
reasons: First, they can help test the reader’s comprehension of the
material and thus serve as a learning aid. Second, many of the problems
are used to establish results that appear in the text. This approach
keeps lengthy proofs from cluttering up the presentations. Answers to
selected problems are given at the end of the text.

The working environment at Bell Telephone Laboratories helped make
this book possible. There were numerous stimulating discussions with
colleagues, and most of the material in the book was taught in a course to
fellow employees. Special thanks are due them for their valuable com-
ments and suggestions, as well as to the many people who helped prepare
the manuscript. /

Finally, to my wife and children, who found out firsthand how much
time is required to write a book of this nature, my appreciation for your
patience and understanding.

Richard W. Daniels



Symbols: |

E(Z)
E*(Z)

e

attenuation, loss
attenuation to the right of F.S;
maximum passband loss
minimum stopband loss
attenuation of ith arc at frequency Fuin,
nth-order Butterworth polynomial
elliptic cosine function
constant multiplier of H
elliptic difference function
delay
minimum difference (excess attenuation) of the ith. are
polynomial that determines the loss minimums of aros
delay ‘
numerator of H, as in H(s) = e(s)/q(s)
even part of e(s)
odd part of e(s)
even part of
transformed version of e(s)
transformed version of e(—s)
frequency
numerator of K, as in K(s) = f(s)/q(s)
even part of f(s)
Xy



xvi Symbols

fi location of ith attenuation pole
Jo odd part of f(s)
F frequency

FA lower passband edge

FB upper passband edge

FH upper stopband edge

FL. lower stopband edge

Funin, frequency at which #th are is closest to the requirement
F'S; ith attenuation step

F(Z)  transformed version of f(s)

H transfer function (ratio of input to output)
()] impulse response

1A image attenuation

IL insertion loss

ip integer part of
j V-1

k modulus of the elliptic integral

k' complementary modulus of the elliptic integral

K characteristic function, complete elliptic integral

K’ complementary complete elliptic integral

Kuwin  minimum stopband value of K(s)

L minimum stopband value of [E.(z,L)|

L(Z)  loss function

m a parameter defined by m = NZ + NIN + 2V

n indicates degree of a filter, polynomial etc.

N number of attenuation poles (excluding those at zero and infinity)

NA number of poles in lower stopband

NB number of poles in upper stopband

NIN  number of attenuation poles at infinite frequency

NZ number of attenuation poles at zero frequency

P parametric multiplier

Py power dissipated in load when coupling network is replaced by a short
cireuit

Py power delivered to coupling network

P, power dissipated in load

P, maximum available power

r, reflected power

q denominator of H(s), as in H(s) = e(s)/q(s)

Q quality of a root

@p quality of a pole

Q. quality of a zero

Q(Z)  transformed version of q(s)

R, relative change in ripple

R, nth-order Tschebycheff rational function

§ complex frequency s = ¢ + jw

sn elliptic sine funection

S normalized complex frequency



Symbols

number of attenuation steps in lower stopband
number of attenuation steps in upper stopband
sampling time

transfer function (ratio of output to input)
reflection funetion

nth-order Tschebycheff polynomial

elliptic integral of the first kind

load voltage when coupling network is replaced by a short circuit
voltage at input of coupling network

load voltage

the first value of x at which R,(z,L) = L
admittance

variable of the Z transformation (z = e°T)
impedance

input impedance of coupling network
transformed version of wy;

transformed version of f;

1th zero of H(s)

quality of the tth zero of H(s)

attenuation function, parametric constant
phase function

angle of a typical term of L(Z)

unit impulse function

a constant uniquely determined by A max

real part of complex frequency s

amplitude of the elliptic integral

imaginary part of complex frequency s

lower passband edge

upper passband edge

upper stopband edge

ith attenuation pole

lower stopband edge

frequency of maximum flatness, critical frequency
sampling frequency )

imaginary part of complex frequency S

xvii
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CHAPTER ONE

Introduction

1.1 APPROXIMATION THEORY

The mathematical discipline known as approximation theory is very gen-
eral and contains many useful theorems. The books Theory of Approxi-
mation>* and Approximation Theory® may be examined by those inter-
ested in the niceties of this area of mathematies.

This book is‘not an attempt to treat approximation theory in general.
Instead, the approximation problem is investigated from the viewpoint
of an electrical engineer interested in designing filters. Thus, while the
treatment is not elementary, neither does it become bogged down with
mathematical details. For example, in discussing how to measure
approximation errors, we will not become involved in a lengthy dis-
cussion of norms. We will, instead, use our time and energy to develop
the approximation theory that is the basis for modern network-synthesis
computer programs. "

Network synthesis is used to find networks that will perform a desired
task. For example, in an AM communication system it is usually neces-
sary to synthesize networks that attenuate certain unwanted frequencies.

* Superscript numbers indicate references listed at the end of the chapter.
' 1



2  Approximation Methods for Electronic Filter Design

The approximation problem of network synthesis refers to the deter-
mination of a system function that, when synthesized, will perform the
desired task. There are usually many different approximating functions
that could be used to solve a specific approximation problém; which one
s “‘best” will depend on many factors, such as the complexity of the
resulting network. Thus this book does not present a unigue solution
to the approximation problem; instead it offers tools that can be used
by the engineer interested in filter design.

1.2 FILTER JARGON

This book is written from the viewpoint of a filter designer, and the
material is described in terms commonly used by filter designers. Since
some of the jargon might not be familiar to readers from other disciplines,
this section provides a brief introduction to the terminology.

Most of the functions encountered in this book are expressed in terms
of the complex frequency s = ¢ + jw. This is the variable commonly
encountered in Laplace transformation theory; given a funection »(t) (for
example, a voltage that is a function of time), its Laplace transformation
is defined as

V(s) = ﬁ) * v(t)e* dt = 2lo(t)] (1.1)

A lowercase letter is usually used to denote a time-domain function, and
an uppercase letter is employed for its Laplace transformation. For
example, for currents one writes

1(s) = £{iV)] ' (1.2)

An impedance is defined to be a voltage-to-current ratio and is always
expressed in terms of the complex variable s. It is usually denoted by
Z(s); that is, : ’

V(s)
Z(s) = —2 .
(s) 70s) (1.3)
The reciprocal of an impedance is defined to be an admittance:
1(s) ' ‘
Y(s) = —=
(s) (s (1.4)

All lumped network response functions—impedances, admittances,
and dimensionless ratios—are rational funetions of the complex vari-
able 5.5 This is the major reason for introducing the complex fre-
quency s; it allows us to consider only rational functions and to employ
our previous knowledge about such functions. For example, a transfer



Introduction 3

function which is a ratio of voltages may be written as

Vout _ ao+als+a232+ CEREES S . L
V;n - b0+b13+b282+ e +bn8"

= T(s) (1.5)

For this transfer function to represent a stable system, the denominator
of 7T'(s) must be Hurwitz; that is, the poles must be in the left half-plane.

If a transfer function is written in terms of the complex variable s,
then it is very easy to investigate the steady-state response of the net-
work. Consider a linear system that has an input which is a smusmd
of frequency w:

vin(f) = sin wt (1.6)
The output will be a sinusoid of the same frequency:
Vout(t) = C sin (ot + ¢) (1.7)

The amplitude C and phase ¢ arise because, in general, the output of a
network will not have the same amplitude or phase as the input. The
ratio of the output amplitude to the input amplitude can be found by
simply evaluating the transfer function T'(s) at s = jw. Because s = jw
corresponds to a sinusoidal frequency, the letter w is often said to repre-
sent real frequencies while the letter s is said to represent complex
frequencies. ‘
If the amplitude of a sinusoid at the output of a network is smaller
than the amplitude at the input, then the signal is said to have been
attenuated (i.e., it has encountered loss). The attenuation is usually
expressed in terms of decibels (dB) as '

Vin(Jo)

A(w) & 20 log ~
out(Jw)

(1.8)

By our definition of the transfer function 7T'(s), this can also be written as
A(w) = —20 log |T(Jw)| (1.9)

In filter theory it is common practice to consider transfer functions
that are ratios of input to output; i.e., we work with

1 bo 4 bis + bas® + - - - + bus”
H N - .
(s) T(s) ao + a8 + azsz + . . . + G S™ (1 10)
e(s)
) 111
q(s) (1.11)

It follpws that the attenuation can be expressed as

A(w) = 20 log |H(jw)] (1.12)



