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LINEAR AND MATRIX ALGEBRA

THE CONCEPT OF A VECTOR

Quantities  with direction as well as magnitude are encountered in physics and
engineering. Both a magnitude and a direction are used to represent force, velocity,
and displacement, for example. These quantities are termed vector quantities or
simply vectors.

Vectors may be represented geometrically as directed line segments; i.e:,
arrows. The arrow's length and orientation correspond to magnitude and direction,
respectively. Three properties of vectors are illustrated in Fig. 1.

Two vectors are equal if and only if they have the same magnitude and direction.
See Fig. 1(a).

Let X and Y in Fig. 1(b) represent displacements. The combined effect of the
two displacem&nts applied sequentially results in displacement X + Y represented
by an arrow directed from the origin of X to the terminus of Y. The vectors X and Y
are two sides of a parallelogram which has X + Y as its diagonal. This is known as
the parallelogram law for the addition of vectors.

In Fig. 1(c), X represents a displacement. The displacement 2-X has tw1ce the
magnitude of X and the same direction as X. The displacemént -1+X has the same
magnitude as X but it is in the opposite direction. In general, X may be multiplied
by any real nutnber c¢. If ¢ > 0, ¢-X has the same direction as X, whereas if ¢ < 0,
the direction is opposité thatof X. The magnitude of c:X is lc|-X, where Ic| denotes
the absolute value of ¢. If ¢ = 0, the magnitude of c-X is zero and its direction is
undefined. Hereafter, multiplication is denoted by juxtaposition; i.e., ¢X. The
number c is called a scalar and cX is known as scalar multiplication.

The geometric representation of vectors may readily be transformed into an
algebraic context. In Fig. 1(b), the terminus of vector X and vector Y are repre-
sentable by ordered pairs of real numbers (x;, x;) and (y,, ¥,), respectively. The
origin of each is denoted by (0, 0). The ordered pairs of real numbers represent
the coordinates of points in a two-dimensional space. A distinction is nade between
coordinates of points and vectors represented by directed line segments. Let

X =[x, X,]

denote a vector X whose origin and terminus- are the coordinates (0, 0) and (x;, x,),
respectively. Vector addition and scalar multiplication are conveniently computed
on a coordinate-by-coordinate basis under the following rules.

X+Y =y, %]+ [y, + ¥ = %, * Y2, X, + ¥
eX = eixy, z] = [ex,, CXz]

Note that the origin 0 = [0, 0] is a vector of zero magnitude and undefined d1rection
"The vectors X = [xl, x5} and Y = [y;, ¥,] are equal if and only if

x =y, and X,=y;

The magnitude of X is the length of the line seglhént between (0, 0) and (x,, x,). The
length r is computed in accordance with the Pythagorean theorem
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X

(a) Equality of Vectors (b) Vector Addition

(c) Scalar Multiplication

FIG. 1. Properties of vectors.

r = i, - 07 + x5, = 00331 = fix2 + )

The magnitude of X (i.e., 1) is nonnegative.

The vectors in Fig. 1 are 2-dimensional. The number of dimensions can be
extended arbitrarily. Force, velocity, and displacement in a 3~-dimensional space,
for example, are modeled by 3-dimensional or 3-component vectors.

Forces encountered in the theory of statics may be viewed as 6-dimensional
when applied to a rigid solid. Three components pull at the center of gravity along
three mutually perpendicular axes. Each of the remaining three components repre-
sents a torque which results in a rotation about one of the three perpendicular axes.
~ As in the 2-dimensional case, two forces are added component-by-component (i.e.,
coordinate~-by-coordinate), and scalar multiplication results from multiplying each
of the components by a given scalar.

‘Heretofore, vectors with components and scalars taken from a field of real
numbers were discussed. Such vectors having a finite number of components, say n,
are members of the set
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n

xR={[x1, fees X IxieRfor1=l,2, ..., N}

Xyo |
The set may be denoted by V(R), the n—-dimensional vector space over the field of

real numbers R. Every member of V,(R) is an ordered n-tuple of real numbers
(i.e., an-th Cartesian product of the set R). That is

Xe Vn(R)

whei'e’
X = [xl», Xos v ooy X |

The concepts of equality of vectors, vector addition, and scalar multiplication
apply to Vn(R) as follows. ,

-

Equality of Vectors
Given X = [xl", Xys oo xn] and Y = [yl, Yoo vves yn], then X =Y if a.nd only if

X, =y, fori=1,2, ..., n
i i i

Vector Addition

X+Y=[x1. Koy ot xn]+ Lvl. Ygr ovs yn]

=[x, + Y, eee X+
E 1 y1’ Xz y2’ ’ xn yn]

" Scalar Multiplication

cX = c[xl, 'x2, Caey xn]

= [ex,, cx_, ...,cxn]

12
Since (R, +, *)is a fieldandc € R

Xi+yi and cxieR, fori=1,2, ..., n

The magnitude of X is

1
r=x2EX2E e XD

Example 1
X =[-3, 0, -1.5, 2]
Y = [-4, 1, 0.5, -1]
X - 3Y =X + (-3Y)
. =[-3; 0, -1.5, 2] + [12, -3, -1.5, 3]
=9, -3, -3, 5]
X, Y, -3Y, and X - 3Y € V(R).
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VECTOR SPACES AND SUBSPACES

Vector Spaces V over a Field F

The components of vectors and the scalars need not be taken from the field of
real numbers. Algebraic properties of equality of vectors, vector addition, and
scalar mwitiplication hold for vectors whose components are elements of any given
field. The scalars are alsc elements of the given field. Additional algebraic laws
are satisfied by vectors V over a field F. All the algebraic properties are summar-
ized in the definition of an algebraic system called a vector space.

Consider the following algebraic systems and opevation:

1. An additive Abelian group (V, +) whose elements are vectors
. A field (F, +, -)whose elements are scalars
3. An operation * defined as scalar multiplication

[\

Note that the symbol "*" is introduced merely to distinguish the operation of
scalar multiplication from the field operation "-''. Thus

* = . . e .
c*X [cxl,cxz, ,cxn]

Juxtaposition is used to represent both as discussed in the previous section.
Scalar multiplication may be viewed as the mapping
Fxv—-V

which connects the field and Abelian group. .
The set of elements V is called a vector space (or linear space) over a field F
if it satisfies the following axioms.

Axiom 1. V is an Abelian group under addition.

Axiom 2. For any vector X @ V and any scalar (i.e., field element) ¢ € F, the
scalar product ¢cX < V is defined.
Axiom 3. If X, Y& Vandc € F:
c(X+Y) =cX+cY

Axiom4. If X Vande, d € F:
(¢ Td)X =cX +dX

Axiom 5. X e Vande, d € F:
(cd)X + ¢(dX)
Also, 1-X =X, where 1 is the multiplicative identity of F.

Scalar multiplication distributes over vector addition (Axiom 3), and scalar
multiplication is associative (Axiom 5). Multiplication (of a scalar) by a vector
distributes over scalar addition (Axiom 4).

From Axiom 1, ifX, Y, Z€ V,
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X+AY)+Z=X+(Y+2)
‘a.nd
X+Y=Y +X

The zero vector 0 is the additive identity vector, and -1-X is the additive inverse

of the vector X.
The zero vector 0 and the zero scalar 0 can be related through the distributive

laws as follows:
0X=c0=0, forallXc VandallceF
An accurate symbolic notation for a vector space V over a field F is
(Vs T (Fs ¥ 2)e %)

However, the simpler notation V(F) is commonly used.

Example 2. Let U be the set of all functions f(x) of a real variable x which are
single-valued and continuous on.the closed interval a <x <b where a <b. Two such
functions, say f(x) and g(x), when added result in

f(x) +gx) =h(x) c U

Furthermore
cef(x) e U
where ¢ € R (field of real numbers).

U is an infinite-dimensional vector space over the field R which arises in
mathematical analysis. Vectors in U do not. have a geometric interpretation. How-
ever, a vector in U may be viewed as having one component for each point x on the
line a <x < b. A component is the value of the function at a given point.

Example 3. Let S be the set of all functions f(x) of a real varizble x Wthh are a
solution to the linear homogencous differential equation

f'(x) - 8f'(x) - 10f(x) = 0
where
f(x) = d¥(x)/dx? and. f'(x).=df(x)/dx

Two solutions are

f=e> and fx)=e =X
and the set of all solutions is of the form

i(x) =c, e5x +tc, e_Zx €8

where ¢}, ¢, € R.
S is a 2-dimensional vector space over R. Its dimension is best explained after

concepts of linear independent vectors and a basis of a finite-dimensional vector
space are discussed.
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Example 4. The set of complex numbers
C={a+bil (a, byc R and i=+-7;

are elements of the field of infinité order (C, +, *).
The set P of polynomials

px) =aj tax+ +anxn

where aj ¢ C and n is a nonncgative integer, is an (n + 1)-dimensional vector space
P over the field C of complex numbers.

Vector Subspaces

Given V(F) and a nonempty subsct W Z V. I W(F) satisfies the axioms of a
veetor space with respect to the operations of vector addition and scalar multipli-
cation in V(F), then W(F) is defined to be a subspace of V(F). Thus W(F) is a sub-
space of V(TI') if and only if it satisfies the two following conditions:

1. (W, T\ is a subgroup of (V, B
2. Wis closed under scalar multiplication defined in V(F)

Conditions 1 and 2 correspond to Axioms 1 and 2, respectively, of a vector space.
The algebraic structure of W(T) is inherited from V(F).

Example 5. Given the vectors
(%) X5 X301 © Vy(R)
If the vectors W over the field R are of the form
[x, 0, x4
then
Xy, 0, X5] + [y, 0, y5l =[x, Ty, 0, x,ty JEW
and

clxy, 0, X5] = [ex,, 0, cX;) € W

Therefore W(R) is a subspace of V,(R). Geometrically, the vectors W are pro-
jections of V onto the plane containing the vectors [x,, 0, 0] and [0, 0, X4].

Example 6. For a given set of vectors Xl’ XZ’ ..., X in V{(F), the vectors S over
the field F of the form r

X +¢.X ++er4c¢ X
€11 T 9%y e

where each c; ¢ F, form a subspace S(F) of V(F).
Note that



[7}
LINEAR AND MATRIX ALGEBRA

: cee 4 + (& + @ + oes +
((:].X1 + 02X2 + chr) (c1X1 02X2 chr)
=(c. +2 +(c +8& 4ees (c. +0 c

(c, +8)X, * (e, + &)X, - (og *E)X €8

and

a(c, X, t¢ X + e+ 4+¢c X )= (ac
rr

+
171 T 2% X, *ac

o eee +
X2 (acr)XrES

hold for all the given vectors Xi and all scalars ci, éi, anda € F.

The null vector 0 is a subspace of any given subspace A vector space V(F) is
by definition a subspace of itself.

- Example 7. A system of m linear homogeneous equations in n unknowns, namely,

xl, xz, ooy Xn’ over a field ’F is the set of m equations
a11"‘1 M T R P
B1%1 Ty T T Ay X, =0
. . .., .

+ LR =
amlxl am2x2 amnxn 0

where each coefficient ajj € F.

.If x1 Cir Xy = c2, - Xn = cn‘ls a solution of the system, then

ey, Cor +--s 1€ V (F)

‘is called a solution vector. Furthermore, it can be proven that the set U of all solu-
tion vectors is a subspace of V (F). The set Uis termed a solution space of the
system of equations. The solution space is nonempty since

e l=00,0,...,0€U

[cl, cz, -

LINEAR INDEPENDENCE AND DIMENSION

‘Linearly Independent Vectors.

The vectors X1, X3, ..., X, are said to be lmearly 1ndependent over F if and
only if, for all scalars c; € F :

+ + e 4 =
clxl szz Can 0

implies that ¢; =0 fori =1, 2, ..., n.
Vectors which are not linearly independent are said to be linearly dependent.
A vector of the form

+ PR
¢ X) *eX, ¢ Xn
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where each Xj & V(F) and each ¢; € F is called a linear combmatmn of X1 X2
X Sce Example 6.
The nonzero vectors X1, Xg, ..., Xy € V(F) are linearly dependent if and only
if some one of the vectors, say X, is a linear combination of the preceding ones.
If :

—_ + + e + £y
X =% To% Che1 k-1
then
+ e e 4 + (- =
¢ ¥ T eXy * 1oy T DX

where at least -1 is one nonzero coefficient. Thus the nonzero vectors X X
s Xp are dependent.
Conversely, suppose the vectors are deperdent. Then

d.X +dX +-"+d X =0
11 2 2 nn -

If k is the last subscript for which dk # 0, then .

-1 -1 -1
= (= + (- “+ v + (- P =
Xy = G Xy + (-4, X, 4 4 X =8
is an expression for X as a lmear combination or preceding vectors except for
k=1. Fork=1,
diX;=0 and X, =0

since d, # 0 leads to a contradiction since X, was assumed to be nonzero.

Example 8. The vectors

X,=1,0090, X,=[,0,1], X;=][0,0, 1]
are taken from thé‘ subspace W(F) in Example 5. Since

X, {-1)X, + X, =0
X1y X,y and X, are linearly dependent. However,

cX) T ¢, X, =y te, 0, 6] =0
implies that c¢; = ¢, = 0. Thus X, and X, are linearly independent.

Given a vector space (or a vector subspace) V(F) such that every vector
X & V(F) can be expressed as a linear combination of a fixed subset of vectors
Xl’ X2, ceny X & V(I'). That is
X=e X +‘32‘(2 trente X

The vector space V(F) is said to be generated or spanned by the vectors

Xl’ Xz, e, Xr’ calleq a set of generators.

In Example 8, X, as well as every X € W(F) is expressible as a linear combi-
nation of X, and X,. Therefore, X, and X, are a set of generators of W(F).

The dimension of a vector space V is equal to the maximum number of linearly
independent vectors contained in V. Consider the vector spaces (or subspaces which
are also vector spaces) over R.
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The vector space consisting of the-null vecior 0 is 0-dimensional since

c0 =0 does not imply ¢ =0

and the vector space contains no linearly independent vectors.
The vector subspace W of V,(R) containing vectors [x,, x,] with a slope of b (i.e.,
X,/X, =b) is 1-dimensional. Since

c[l, b] =0 impliesc =0

the vector X = [1, b]is linearly independent. So is Y = [2, 2b]. However, 2X-Y=0.
Therefore X and Y are linearly dependent. Each generator of W contains one and
only one linearly independent vector Thus W over R is denoted as Wy(R).

In Example 5, a maximum of two linearly independent vectors is contained in
the subspace W over R. All vectors in W lie on a plane and W has dimension 2.

Any set of a maximum number of linearly independent vectors in a vector
space spans the vector space.

Theorem 1. If n vectors span a vector space V containingin linearly independent
vectors, thenn > r. '

Proof: Let S0 = {Xl, Xpy ooy Xn}, a sequence of n vectors that span V which con-
tains A ={A;, A,, ..., A/}, a sequence of r linearly independent vectors.

The vector A1 may be expressed as a linear combination of the vectors € S,.
The sequence Ty = {Al, X1y Xgy vvny Xn} is linearly dependent. Since S; spans V,
every vector in V is expressible as

+ + T 4+

OA1 clxl CZXZ chn
and T, also spans V. Some vector in T; must be dependent on its predecessors by
arguments given at the beginning of this section. The vector cannot be A #0,
which is from the sequence A of linearly independent vectors. Hence scme vector X

is dependent on its predecessors A_, X_, X_, ..., X  _. Deleting X, from the
. \ 1 1 2 i-1 b |
sequence T 1 results in the sequence
s1 ={A1, xl, Xz’ e, xi_l, Xi—2’ xn}

which also spans V.
Repeat the argument with the sequence T, = {Az, Sl} or _
T_ = A N ces
2 {AZ' 1’ Xl’ 2’ ’ Xj-l' Xj+1’ ! Xn}_
which is linearly independent and spans V. Some vector in Ty is linearly dependent
on its predecessors. The vector cannot be A,y or Ay and must be some )LJ where
j #1. Deleting Xj results in a new sequence of n vectors
8, ={A2, Ap X X, oo X, X o Xj-l’ Xj+1, _xn} ‘
which span V. After r times the r vectors in A will have been exhausted and r of the
vectors contained in S, will have been eliminated. This proves that S must have
contained at least r vectors so that n'> r.
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Example 9. Given U a subSpace of V,;(R) consisting of vectorsiwhose coordinates
sum to zero. The vectors

=[1,0,-1], X,=[0, 1, -1], and X;=[1, -1, 0]

span U. However, X, is the only generating vector that can be expressed as a linear
combination of its predecessors Namely

X3 = [11 0, _1] - [01 lf "1]

Therefore X; and X, are linearly independent and are contained in the sequence
{X;; X,, X} which spans U. The vector subspace U is 2-dimensional and X, and X,
alone span U..

~ The dimension of a finite-dimensional vector space is not to be confused with
the dimension of a finite~-dimensional vector. The dimension of a vector space is
the maximum number of linearly independent vectors it contains or, equivalently,
the minimum number of generating vectors required to span the space. The number
of components a vector has is the vector's dimension.

BASES OF VECTOR SPACES

A basis of a vector space is defined as a linearly independent subset of vectors
which spans the vector space. The vector space V (F) contains the n linearly inde-
pendent unit vectors

E =101,0,0,...,0,0], E,=[0,1,0,...,0,0), .., E =[0,0,0,...,0,1]

Each vector X = V can be expressed as a linear combination of the n unit vectors

» X ] = E+XE+ '+xE

= Xy e X 272

The n unit vectors are a bas1s of V (F) Often they are referred to as a natural
basis .

A vector space is finite-dimensional if and only if it can be formed with a finite
basis .

Theorem 2. Every basis of a finite-dimensional vector space consists of the same
number of vectors.

Proof: Assume

X=X ,X, ..., d =

{ 1’ 72 Xn} and ¥ {Yl’ Yz' ’ Yr}

dre bases of vector space V. In accordance with Theorem 1, since X spans V and
the r vectors in set Y are linearly independent, n > r. Similarly, since Y spans V
and the n vectors in set X are linearly independent, r >n. Thenn =r.

The number of vectors in any basis of a finite-dimensional space is the dimension
of the vector. Consistent with previous comments and stated without proof is Corol-
lary 1.
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Corolla;_y' 1: A set of n vectors of an n-dimensional vector spaoe Visabasisof V
only if V is spanned by the n vectors or the n vectors are linearly independent.

In Example 3, a basis for vector space S over R is {f;(x), f,(x)}. Therefore S
is 2-dimensional.

Theorem 3. Every vector in Vp(F) can be expressed uniquely as a linear combina-
tion of {Xl’ Xps ons Xn}, a basis of V.
Proof: Assume an X € V has two expressions as follows:

= + v + e+ .
X clxl 02X2 chn

Then

-0 + e o+ - =
cz)X2 (c c)X =0

-X = -0 +
X-X (c1 cl)X1 (c2 n” n%n

Since X;, Xo, ..., X, are linearly independent, ¢ = Ei fori=1, 2, ..., n,
proving the expression for X is unique.

SIMULTANEOUS LINEAR EQUATIONS

Given the n m-component vectors

Al = [an, a21, eeey amI]
Bp TByp Bppr e Ayl
An - [aln Bon? "7 amn]
If Al’ A2, ceny An are linearly dependent

CA +CA +-o-+CA =‘0

for a set of c;'s not all of which are 0 Equivalently, the corresponding simultaneous
linear homogeneous equations has a nontrivial solution:

+ et e =
118 TR0 T T A% 7O

o+ Foeee =
8211 T 332% 2onCn =0
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See Example 7 where each cj (scalar multiplier of a respective Aj) is a value of a
corresponding x; -

Efficient methods for solving simultaneous linear equations involve matrices.
The concept of a matrix is therefore introduced here.

A matrix is defined as a rectangular array of elements of a field ¥. If a matrix
coritains m rows and n columns, it is termed an m X n matrix over the field F. The
vector

X=[X1, XZ’ ceny xn]

may be viewed as a 1 X n matrix which is called a row vector. Thus the m X n matrix

41 M2t g
321 3.22 R a2n
A = Ll
ant Z%mg 7 %mn
L - -

may be regarded as m n-component row vectors.
The m x 1 matrix

Y1

Yo

‘Xf

Ym
is called a column vector. Matrix A may also bg regarded as n m-component column
vectors. :

Matrix A represents the coefficients of the system of equations in Example 7.
The matrix can be simplified by applying a sequence of elementary row operatioms

which belong to one of the following three types.

1. ry; which denotes the interchange of rows i and j
2. rl(k) which denotes the multiplication of row iby ke F where k # 0
3. 11](k) which denotes the replacement of row i by row i added to k times row j

Elementary row operations provide a means for testmg for linear dependence
and determining the solution(s) of simultaneous linear equations.

Given the m x n matrix A. A finite sequence of elementary row operations on A
will result in the m xn matrix B. Matrix B is row-equivalent to matrix A. Row-
equivalence of matrices is an equivalence relation on the set of all m x n matrices.
(See the article entitled Abstract Algebra.)

The subspace of V,(F) spanned by the row vectcrs of a m X n matrix A is
defined as the row space of A. It can be proven that row-equivalent matrices have
the same row space. Also, any sequence of elementary row operations on matrix A
resulting in the row-equivalent matrix B yields explicit expressmns for the rows
of B as linear combinations 'of the rows of A.

ﬂf“///—‘/



