APPLE I’ BASIC

BY DAVID €. GOODFPELOW

. s

PPLE I’ BASIC

BY DAVID C. GOODFEUOW

- &xtwg’ |
[ZI] TAB BOOKS Inc.

BLUE RIDGE SUMMIT, PA. 17214

8550079

73 '6‘/22/ |
G 61

J 9/?27// 2

FIRST EDITION

SECOND PRINTING

Copyright © 1983 by TAB BOOKS Inc.

Printed in the United States of America 1 ” 1‘,“

Reproduction or publication of the content in. any iﬁanner without express
permission of the publisher, is prohibited, No, habmty is assumed with respect to
the use of the information herein. A

Library of Congress Cataloging in Publication Data

Goodfellow, David C.
Apple li BASIC.

Includes index.

1. Basic (Computer #rogram language) I.-Title. o
li. Title: Bootstrap B.A.S.1.C :
QA76.73.B3G65 1983 001.6424 -~ 82-19300 , -
I1SBN 0-8306-0113-9 oo .
ISBN 0-8306-1613-X (pbk.)

Introduction

[think I must have read most of the many excellent books on BASIC available
today. From these books I learned the functions of GOTO, GOSUB, If-Then,
Print, Clear, and so forth, but they never did teach me how to use these
statements to make the computer do a useful task. I suspect those books
assumed I had the imagination to take it from there. I didn’t.

The problem with books written by experts for beginners is that by the
time the author becomes a true expert, he often has forgotten what it is like to be
a beginner —and therefore assumes his reader will understand his directions
immediately. Since I have a way to go before I become an expert, I hope I have
not made this mistake.

This book is about applications—the how-to of hard-copy formatting, disk
operations, accurate number round off, operator-oriented displays, etc. It's
intended to be a tool for the newcomer to microcomputing, who knows what the
command statements are but doesn’t know what to do with them. T call it
“bootstrap BASIC” because I hope it will help you pull yourself up by the
bootstraps. I hope, even the expert will find something of value here.

I sometimes buy a book with the subconscious idea that just by reading it |
will automatically learn whatever information the author has put in it. If only it

xi

8550079

were true! It takes study. It takes practice. It takes work. I learned more about
BASIC while writing this book than I had ever learned previously, because 1 had
to organize my information and test the results. If you really want to learn a
subject, write a book about it. If you don’t have the time, study this one. If you
work with it, this book will do its job.

An important part of this book is its library routines. Since every program 1
write uses some, if not most, of these routines, I keep them in a single package
on disk. My first step when coding a program is to transfer this library to
memory. This single step can accomplish half the coding for the new program!

The library is used to build a name and address program called Bootstrap
BASIC, which lets you store and find (of all things) names and addresses. This
program can be expanded or modified to keep recipes, inventories, or whatever
you like. It could be expanded further to keep clients and charges in two
separate files with one common element (like a project number) for billing.

Although library routines appear throughout the book as examples, the
complete library is reproduced as a listing in Appendix A. If you plan to copy the
listing, do so from the Appendix, as it has .ot been subjected to retyping and
typesetting, and should be free from error.

Appendix B is a complete listing of the sample program. Appendix C
contains listings of programs which convert sequential text files to random
access text files, and vice-versa. Appendix D contains listings of all complete
programs used as examples throughout the book.

Many areas of the book are built upon information provided earlier.
Therefore, for best results read it through and do the exercises in order.

The book is written with the Apple II/Applesoft ROM in mind, but the
routines will run in any BASIC with slight modification.*

*Take that statement and add salt tc taste. Some pmgrammefs will find “slight modification” to
mean just that. Others will find it means hours of frustration. The difference is in how far apart the
two dialects of BASIC are, and the programmer’s knowledge of and competence in the two.

xii

BT0d06 -

Contents

-

List of PrOgrams..........cceermsersnnennsnesnnsesnnssnsssssssssssacsassnsanssnssssnaes cenen Vil

List of llustrations......c.coerrenruenesens asesssessecsrronssrasennnuranses cenerssrensnsensand X

INETOAUCHION «.eevveeeersereeecveseneasessssssssssessssssessasessassassnrsnssansssssssosssansasanci

1

Ground Rulesccececrveemnemrenenrasancens vreeseenssessnrsssnesaressansasesasasases |
Develop a Subroutine Library...........cccceereeeneencs

Define the Project
Program for Other Users .
Leave Your Options Open...........cmeeceeenissanccnnes
Format Your Program Listingscccveeeeceencniosinninenend
Wrapup

Flowcharts reearsnsasesressrerensatsssanstasen ermenssernuentansrasrasns reesesnsesnns 7
How to Make a Flowchart.............ccccooeminiiinennnnenseninnienen. 7
How to Use a Flowchart..........ccccccvvninninieciinnnnen s 15

Input Techniques........:.... cearssserecresesennsnstEetiteassasssnecrssssnnRRanEs 19

THE MBAW........cecoceer e iienereetesrnessanesesesesesnesasasssnnasas ennsrebens 19

intercept Operator Errors...
Password Protection..........
Programmer Protection..........c....cccveeevricniesnnninsessenssnssrerenas 27

4 Output TEChRIQUES..............ccoumritnerercerrerriorsecnssirssessansssssses sessnesasd]

Formatting Hard Copy
PEEK, POKE, and Call..........
Bells, Inverse, and Flash.............cccevvveeer e

5 Disk Operating SySteml..........ccovrrecmrverersirerenrsonnenssareroscasessassssnnesd 7
DOS TOIMS.......ccover it iereas cenestenite srebe et seoesntassona 37

DQS Error Messages — 40
Sequential Versus Random Access Text Files................... 43

6 Sequential Text Flles Y PRSPRRSPRRY - ¥
. vStartFlle

Deletions...
Comblnations

7 Random Access Text Files..........ccocecrriemrrenscnsssrecescssnessssonsssesnense 13
Using Random Access Text Files Sequenuany 74
True Random Access
Wrapup rereriseanenaeeestatasasresresaenrenabeneenen rertennes 106

The SOt RoUtINGccccoovuiireeeeiiceeeceeseccesesrasaen srnonen 108

9 Hints and Kinks..........coeceerreerrecnirieninnesecsnsscessanmssensnsssssosesseences 1 13
Use of the Get Commandccconnrimenreerenennesinns
Use of CHR$(4) . -
Use of Primt DS........... ettt sea saesereseess sasanes et eransraens
Search for a Partial String .
Automatic File Opening
Saving Binary FIIeS............ccocceevvevemevinsireseverssiesenesons
Number Crunching.

Why Variables?....................
A Tipon Naming Variables .
Memory Tip.......ccoeeeennnns
Psychoanalysis ...
Psychotherapy
Claaning the DrVeS...............oceeueieeenrcessieneevneneaes oo

Appendix A Library ROUtRES..........ccooorneeremssessersmsasssmnsscssssssessnnses, 132

Appendix B Bootstrap BASIC.................cecorimniricnnnmssssisssssssssnns 140

Appendix C Random/Sequential and Sequential/Random File

Converters...........c.ccoerveniiiiininnirinecncniesssssnsssassanasans 155
Appendix D Example Listings........c..cccceeteeirerirnicncncrincecanienenercenens 161
GOSSANY ...ccovrunriiirnniiicricininrareercrerenssesssasssasvesenmeerssranrssasnarnsnss 214
HUABX........ceuerernuecrrsassssaressssssranesensassonsasonsassesssensassssssssesassssrsssnsnses 225

. Ch‘apte‘r' :1
Ground Rules

Some things are so fundamental to programming that no one ever talks about
them. The result is that every newcomer must learn them by trial and error.
Eventually each beginner does learn, but it is so slow! Get a head start by taking
this chapter to heart. Absorb it. Live with it. Always make it a part of your
programming projects. You'll save yourself hours of work, and the project will
be much more satisfying to you and to whoever uses your program.

DEVELOP A SUBROUTINE LIBRARY

_ If you do a lot of programming (and you will), you'll find that many of the
subroutines you develop will be used again in other programs. There’s no point
in reinventing a subroutine, or even rekeyboarding one, fgr a new program.

Areal timesaver is to write a library program—one that does nothing itself,
but contains every subroutine you have which could be used in more than one
program. A library program is given in Appendix A.

When you first start a programming project, load the llbrary program and
build on it for your new program. This practice not only eliminates much of your

PRIV DR

keyboard typing, but it also standardizes the line numbers used for particular

functions.
For example, you'll soon know by habit that a GOSUB 180 command in any

of your programs will turn on the printer. Not only will your programming
become easier, but debugging will as well. The similarities among your pro-
grams, even when they are designed for different tasks, will allow you to
interpret their listings with ease.

When the program is finished, delete any library subroutines that are not
needed to speed up operation and reduce the amount of memory required to run
the program.

DEFINE THE PROJECT

The more complex a program is, the more difficult it is to write and debug,
because as your programming progresses it becomes harder to keep track of
what must be, and has been, done, The solution is to define the whole project in
terms of a number of simple tasks. This does two things for you: first, it gives
you a clear picture of the project; second, and equally important, it gives you a
psychological advantage. Although the project seen in total may be intimidating,
each miniproject within it will be small enough for you to tackle with confidence.

Use flowcharts. Make one for the overall project to identify major tasks.
Study it, and make sure it addresses the whole project. From that flowchart, list
all the smaller tasks. Assign each a name, and make a flowchart for each. You'll
find a discussion of flowcharts in Chapter 2, and examples throughout the book.

Identify the routines that will be used more than once and turn them into
subroutines. If they look as if they could be used in other programs, add themto
your library. There’s no point in rewriting a job each time it must be done when
you can simply tell the computer 1o do it again! I can’t speak for your computer,
but my computer loves the drudgery of repeating the same job. No imagination
whatsoever.

Put the remaining routines in order of performance. Write and test each
before going on to the next. This practice will simplify debugging the program,
for when the job is done each element will have already been debugged. The
only room left for bugs is in the interaction between the elements.

A few gems of wisdom: At the end of a subroutine, clear all variables unless
their values must be used elsewhere. If you don’t, the values may pop up
elsewhere in the program, dlscombobulatmg your homeostasis—a very dis-
comforting situation.

- A

Define each variable before you begin, and keep = list. Try to make the
variable name reflect its definition. For example, date could be DT$. You'll
recognize it more easily in the program listing. If available memory or speed of
operation is not a problem, record these variables and their definitions in
remark (REM) statements at the end of the program. Keep them in a master
program, but strip them from a working copy for speed of operation.

Assign the lowest line numbers to the subroutines used most often. Since
the computer searches for line numbers by beginning at the lowest line number
and working up in its search for the selected subroutine, placing these early in
the program will add to its speed of operation.

PROGRAM FOR OTHER USERS

My early programs were written for me. What need did I have of well-
conceived prompts? I wrote it, didn’t I? I don’t need to have the computer’s input
needs spelled out, do I? .

You bet I do! Some of my early programs required operator retraining after
every coffee break. Now, my programs not only tell me when they’re waiting for
my input, but they also tell me what kind of input they need—and they squawk if
[feed them the wrong kind of data!

The Apple II has three excellent ways of getting your attention: reverse
video, flashing video, and the audio beep. I use all three. ’

Reverse video separates computer prompts from my replies, allowing me
to tell which is which on a cluttered screen. I need all the help I can get, and 1

“suspect others do, too.

1 use flashing statements for prompting when a stupid response on my part
could do bad things—such as sort on the wrong field.

I add a beep if these bad things could be disastrous (such as deleting the
wrong record), and five beeps if I ask for information that isn’t there (usually
because I deleted the wrong record anyway).

Let’s face it. The computer’s a marvelous device, but it has two attributes
that make it dangerous: it's fast and it’s durnb. Within limits, it will do whatever

~ you tell it to do, including destroying all your files. Therefore, you must include
traps in your programming that make the computer say, “Whoa! Are you sure
that’s what you want to do?” That’s why sound effects_and reverse and flashing
video are such valuable tools.

The HOME (in Applesoft) and CALL —936 commands are terrific for

keeping the screen uncluttered, but use them sparingly! Clear the screen only
when you have no further use for any of the mformatlon onit. Obvious, you say?
Not really.

-A hard decision to make 1s when are you through with the information. As
long as any information on the screen can be used as reference to your next step,
leave it up there. But get rid of it when it’s just taking up space.

Provide for editing your input. Program to reject or challenge input outside
reasonable parameters. For example, format dates so that the number repre-
senting a month cannot exceed 12 without the computer rejecting it; likewise,
have the computer reject your input for the day of the month if the number
representing it exceeds 31.

Obviously bad data should be rejected by the computer. Questionable input
should be challenged but not necessarily rejected. The number representing the
year (for example) should be challenged if it is less than 1970 or more than 2000,
if only the years within these boundaries are considered reasonable or normal
input. All a challenge does is point out that this is an unusual input and asks you

to confirm it before continuing.
When a block of data has been input, call it back for verlﬁcatlon ‘with each

item on a separate, numbered line so that if it is in error you can identify and
correct it by line number. A Y response to the question: IS THIS CORRECT"
will record it; an N will allow you to change it by line number.
If you ever write a program for someone else, remember that othe;s may
not be so enamored (not yet enlightened) w1th computers So give your Apple
some manners. Keep it polite, even subservient: no insults.

LEAVE YOUR OPTIONS OPEN

We've all heard of the man who built a boat in his basement and then
couldn’t get it out, and his brother who painted himself into a corner. They’re
called psychoceramics (crackpots). In programming, it's so easy to do you may
count yourself lucky if it doesn’t happen! Ifit does, don’t worry about it. Another
name for crackpot is “visionary.”

Ways to avoid that problem are to treat each task as a separate routine,
callirig that rcutme from.the master program, and avoiding consecutive line
numbers. (Assign line numbers by tens, so you'll be able to insert statements
that you'll inevitably forget in your original coding.) '

. But, if it happens that you've closed the door on a routine by putting it in the
master program, you can always turn it into a sometimes subroutine by in-

stalling a programming switch. With the switch off, it’s just a humdrum little
statement. But when you turn the switch on, it steps into a phonebooth and . . .
more on this later. :

FORMAT YOUR PROGRAM LISTINGS

The colon has three functions in programming, the most important of which
is to allow multiple statements in a single program line. The other two functions
are strictly cosmetic but can be important tools.

Have you ever searched a long program listing for the first line of a
particular program section? If that line is buried within a mass of single-spaced
lines, it’s hard to find. However, following a line number with a colon and nothing
else gives the effect of double spacing, and the line sticks out like a sore thumb.

The best way to use this is to end a program section with one or two
line-number/colon combinations and begin the next section with 2 REM state-
ment, as shown below:

10 ses:z2:222222:22:23:2:REM ***BOOTSTRAP BASIC***
20 REM NAME/ADDRESS PROGRAM

30 :

40 :

50 REM ***CONFIGURATION***

60 DIM A$(50): DIM B$(50)

70 D$ = CHR$(4)

Line 10 shows the other cosmetic use of the colon. Here the colon string
indents the statement, allowing such things as for-next loops (or anything else
you wish to highlight) to stand out.

Although both uses of the colon eat memory and slow down execution,
rarely will either be noticeable, and highlighting program areas this way will
make them easier to find in the listing.

WRAPUP

All these thvings are easily ddne. You'll find further discussions of them,
with examples, in later chapters. Subroutines and programs follow, with expla-
nations. Note that there’s probably a better way to do everything shown here,

but these work! '

VAP,

R,

Chapter 2

Flowcharts

Chapter 1 discussed the importance of flowcharts. Boaters and flyers use charts;
programmers use flowcharts. We can get along without charts and flowcharts if
we can see where we're going or don’t care, but if we don’t know the way and
don’t want to get lost, we have to have help.

~ Programmers have some advantages over flyers and boaters. We can make
our own maps without knowing the terrain. If we get lost in spite of them, our
lives aren’t at stake—only our samty (Some would say a ptogrammer 5 sanity is

- already open to question.)

A flowchart is simply a map of the route you want your program to take.
There's nothing difficult about it; no secret skills are required. Infact, simple as
flowcharts are, they make the whole programming job xmmeasureably easier,
and result in a more efficient program. .

HOW TO MAKE A FLOWCHART

Hotshot programmers seem to think they need a great many symbols to

show what their program should do, and this tends to intimidate the rest of us.

Actually, most programs can be flowcharted with five symbols or less:

1.
2.

Ovals show the beginning and end of-a- program or program element.
Rectangles indicate processing operations (turn on a device, add, sub-
tract, multiply, divide, etc.).

3. Parallelograms indicate input and output operations.
4.
5. Arrows show the direction of program flow.

Diamonds indicate decisions (IF-THEN).

These symbols are not sacred. Some programmers use different symbols to
represent specific actions within these functions, and those symbols are also
correct. These symbols are widely accepted. If we stray too far from them our
flowcharts may confuse another programmer, and we may someday want him to
understand what we've done. »

The symbols listed above and shown in Fig. 2-1 are those we'll use in this
book. The balance of this chapter shows the various flowcharts drawn for the
Bootstrap BASIC program used as an example in this book. Figure 2-1 is a
sample flowchart showing the symbols we’ll be using and has no other signifi-

‘cance.

o LR AR e Ty

. i Rt L . B e RO Nt

Process
Description

K 2

. . Input Fig. 2-1.’Flowohanaymbpls..
Output o

Decision

Initialize

Master menu
1 0 3 4

2
11 Delete
records : ' records
(line 1000) (Iine.4000)
Search © Edit
file | records
(line 2000) | (iine 3000)

Fig. 2-2. Flowchart, Bootstrap BASIC overall pian.

Figure 2-2 shows the overall plan of the Bootstrap BASIC program in terms
of the master menu. Note that the four major program functions exit back to the
master menu, and that the {ifth function (0) exits the program. This makes the
master menu the only legitimate exit from the program, allowing any required
housekeeping to be done before you put the disk away.

Figure 2-3 shows the ADD function. The program will ask the operator if he
wishes to unlock the file. This is represented by the first diamond. Of course,

