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Preface

Several years ago I reached the conclusion that the theory of probability
should no longer be treated as adjunct to statistics or noise or any
other terminal topic, but should be included in the basic training of all
engineers and physicists as a separate course. I made then a number of
observations concerning the teaching of such a course, and it occurs to me
that the following excerpts from my early notes might give you some
insight into the factors that guided me in the planning of this book:

“Most students, brought up with a detérministic outlook of physics,
find the subject unreliable, vague, difficult. The difficulties persist
because of inadequate definition of the first principles, resulting in a con-
stant confusion between assumptions and logical conclusions. Con-
ceptual ambiguities can be removed only if the theory is developed
axiomatically. They say that this approach would require measure
theory, would reduce the subject to a branch of mathematics, would
force the student to doubt his intuition leaving him without convincing
alternatives, but I don’t think so. I believe that most concepts needed
in the applications can be explained with simple mathematics, that
probability, like any other theory, should be viewed as a conceptual
structure and its conclusions should rely not on intuition but on logic.
The various concepts must, of course, be related to the physical world,
but such motivating sections should be separated from the deductive part
of the theory. Intuition will thus be strengthened, but not at the expense
of logical rigor.

“There is an obvious lack of continuity between the elements of
probability as presented in introductory courses, and the sophisticated
concepts needed in today's applications. How can the average student,
equipped only with the probability of eards and dice, understand pre-
diction theory or harmonic analysis? The applied books give at most a
brief discussion of background material; their objective is not the use of
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vi Preface

the applications to strengthen the student’s understanding of basic
concepts, but rather a detailed discussion of special topics.

“Random variables, transformations, expected values, conditional
densities, characteristic functions cannot be mastered with mere exposure.
These concepts must be clearly defined and must be developed, one at a
time, with sufficient elaboration. Special topics should be used to illus-
trate the theory, but they must be so presented as to minimize peripheral,
descriptive material and to concentrate on probabilistic content. Only
then the student can learn a variety of applications with economy
and perspective.”

I realized that to teach a convincing course, a course that is not a
mere presentation of results but a connected theory, I would have to
reexamine not only the development of special topics, but also the proofs
of many results and the method of introducing the first principles.

“The theory must be mathematical (deductive) in form but without
the generality or rigor of mathematics. The philosophical meaning of
probability must somehow be discussed. This is necessary to remove the
mystery associated with probability and to convince the student of the
need for an axiomatic approach and a clear distinction between assump-
tions and logical conclusions. The axiomatic foundation should not be a
mere appendix but should be recognized throughout the theory.

“Random variables must be defined as functions with domain an
abstract set of experimental outcomes and not as points on the real line.
Only then infinitely dimensional spaces are avoided and the extension to
stochastic processes is simplified.

“The inadequacy of averages as definitions and the value of an under-
lying space is most obvious in the treatment of stochastic processes.
Time averages must be introduced as stochastic integrals, and their
relationship to the statistical parameters of the process must be estab-
lished only in the form of ergodicity.

“The emphasis on second-order moments and spectra, utilizing the
student’s familiarity with systems and transform techniques, is justified
by the current needs.

‘“Mean-square estimation (prediction and filtering), a topic of con-
siderable importance, needs a basic reexamination. It is best understood
if it is divorced from the details of integral equations or the calculus of
variations, and is presented as an application of the orthogonality prin-
ciple (linear regression), simply explained in terms of random variables.

“To preserve conceptual order, one must sacrifice continuity of
special topics, introducing them as illustrations of the general theory.”

These ideas formed the framework of a course that I taught at the
Polytechnic Institute of Brooklyn. Encouraged by the students’ reac-
tion, I decided to make it into a book. I should point out that I did not
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view my task as an impersonal presentation of a complete theory, but
rather as an effort to explain the essence of this theory to a particular
group of students. The book is written neither for the handbook-
oriented students nor for the sophisticated few who can learn the subject
from advanced mathematical texts. It is written for the majority of
engineers and physicists who have sufficient maturity to appreciate and
follow a logical presentation, but, because of their limited mathematical
background, would find a book such as Doob’s too difficult for a begin-
ning text.

Although I have included many useful results, some of them new,
my hope is that the book will be judged not for completeness but for
organization and clarity. In this context I would like to anticipate a
criticism and explain my approach. Some readers will find the proofs of
many important theorems lacking in rigor. 1 emphasize that it was not
out of negligence, but after considerable thought, that I decided to give,
in several instances, only plausibility arguments. I realize too well that
‘“a proof is a proof or it is not.”” However, a rigorous proof must be pre-
ceded by a clarification of the new idea and by a plausible explanation of
its validity. I felt that, for the purposes of this book, the emphasis
should be placed on explanation, facility, and economy. I hope that
this approach will give you not only a working knowledge, but also an
incentive for a deeper study of this fascinating subject.

Althoughb I have tried to develop a personal point of view in prac-
tically every topie, I recognize that I owe much to other authors. In
particular, the books ‘‘Stochastic Processes” by J. L. Doob and “Théorie
des Functions Aléatoires’” by A. Blanc-Lapierre and R. Fortet influenced
greatly my planning of the chapters on stochastic processes.

Finally, it is my pleasant duty to express my sincere gratitude to
Misha Schwartz for his encouragement and valuable comments, to Ray
Pickholtz for his many ideas and constructive suggestions, and to all my
colleagues and students who guided my efforts and shared my enthusiasm
in this challenging project.

Athanasios Papoulis
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1

The Meaning
of Probability

Scientific theories deal with concepts, never with reality.
All theoretical results are derived from certain axioms by
deductive logic. In physical sciences the theories are so
formulated as to correspond in some useful sense to the real
world, whatever that may mean. However, this corre-
spondence is approximate, and the physical justification of
all theoretical conclusions is based on some form of induc-
tive reasoning.

The student accepts readily this separation between the
conceptual world (model) and the physical world for the
so-called deterministic phenomena, but in probabilistic
descriptions he confuses these two worlds. He has been
taught that the universe evolves according to deterministic
laws that specify exactly its future, and a probabilistic
description is necessary only because of our ignorance.
This deep-rooted skepticism in the validity of probabilistic
results can be overcome only by a proper interpretation of
the meaning of probability.

In the following discussion we attempt to show that
probability is also a deductive science and must be devel-
oped axiomatically. It is of course true that the corre-
spondence between analytical results and the real world is
imprecise and cannot be ‘‘proved’’; however, this is char-
acteristic not only of probabilistic results but of all scientific
conclusions.



4 The meaning of probability [Chap. 1

1-1. Preliminary remarks

The theory of probability deals with averages of mass phenomena
occurring sequentially or simultaneously: electron emission, telephone
calls, radar detection, quality control, system failure, games of chance,
statistical mechanics, turbulence, noise, birth and death rates, heredity.

It has been observed that in these and other fields certain averages
approach a constant value as the number of observations increases.
Furthermore, this limiting value remains the same if the averages are
evaluated over any sub-sequence specified before the experiment is per-
formed. Thus, in the coin-tossing game, the percentage of heads
approaches 0.5 or some other constant, and the same average is obtained
if one considers every fourth, say, tossing. (No betting system can
beat the roulette.)

The purpose of the theory is to describe and predict such averages,
and this is done by associating probabilities with various events. The
probability P(@) of an event @ in a clearly specified experiment € could
be interpreted in the following sense:

If the experiment is repeated n times and the event @ occurs n, times,
then, with a high degree of certainty, the relative frequency ne/n of
the occurrence of @ is close to P(Q@),

Ng
P(@) ~ o (1-1)

provided n is sufficiently large.

This interpretation is obviously imprecise; however, it cannot be
essentially improved. One could modify it by giving, for example, a
probabilistic content to the “high degree of certainty,” but such modifica-
tions will only postpone the inevitable fact that probability, like any
physical theory, is related to physical phenomena only in inexact terms.
Nevertheless, the theory is an exact discipline developed logically from
clearly defined axioms, and when it is applied to real problems, it works.

In any probabilistic investigation of a physical phenomenon one
must distinguish three separate steps:

Step 1 (physical). We determine by a process that is not and cannot be
made exact the probabilities P(@) of certain events @ (probabilistic
data). '

This step could be based on (1-1): P(Q) is equated to the experi-
mentally determined ratio ne/n (relative-frequency approach). For
example, if a loaded die is rolled 1,000 times and five shows 203 times,
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then the probability of five equals about 0.2. In some cases, P(Q@) is
found a priori by pure reasoning without any experimentation (classical
approach to be soon discussed). Given a ‘“fair”’ die, one “‘reasons’’ that,
because of its symmetry, the probability of five equals 4.

Step 2 (conceptual). We assume that probabilities satisfy certain
axioms, and by deductive reasoning we determine from the probabilities
P(@Q) of certain events @ the probabilities P(®) of other events ®.

For example, in the rolling of a fair die we deduce that the probability
of the event “even’ equals 3§. Our statement is of the following form:

If P1l) =P2)= --- =P(6) =1 then P(even) = 3§

Step 3 (physical). We make a physical prediction using the numbers
P(®) determined in step 2.

This step is again imprecise and could be based on (1-1). If, for
example, we roll a fair die 1,000 times, we expect that an even number
will show in about one-half of these rollings.

The theory of probability deals only with step 2; i.e., from certain
assumed probabilities it tells us how to derive other probabilities. One
might say that such derivations are mere tautologies because the results
are contained in the assumptions. This is true in the same sense that
the intricate equations of motion of a satellite are included in Newton’s
laws. But no one denies the value of the science of mechanics.

We could not emphasize too strongly the need for separating clearly
the above three steps in the solution of a problem. The student must
distinguish between the data that are either assumed or determined by
inexact reasoning and the results that are obtained logically.

Steps 1 and 3 are the subject of investigation of statistics. How-
ever, even in statistics all results are given in terms of probabilities, with
the difference that final experimental testing is applied to events whose
probability is almost 1. In this case the relative-frequency interpretation
takes the following form:

If the probability of an event is almost 1, then, with a high degree of
certainty, this event will oceur in a single trial.

Even so, the difficulty of assigning probabilities to real events is
not eliminated, and one might wonder how to proceed in a physical
problem. To determine the probability of heads, should he toss a coin
one hundred or one thousand times? Suppose that, after one thousand
tossings, the average number of heads settled to the value 0.48. How
can he make a prediction on the basis of this observation? Out of what
logical necessity must he deduce that, at the next thousand tossings,
the average will be about 0.48? This question can be answered only
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by some form of inductive reasoning. However, such reasoning is used,
not only in probabilistic statements, but in all conclusions drawn from
experience, even in the so-called deterministic sciences. Consider, for
example, the development of classical mechanics. It was observed that
bodies fell according to certain rules, and on the basis of this observation
Newton’s laws were formulated and used successfully to predict future
events. If one wants to ‘“prove” that the future will evolve in the
predicted manner, he will have to invoke a metaphysical cause like
“regularity in nature.”” The physicist bases his conclusions on inductive
reasoning, and he is content that his predictions are correct. This point
of view gives him also the flexibility to abandon any theory if subsequent
evidence contradicts it. If he finds it useful to describe certain phe-
nomena probabilistically, he does so without the need for a deterministic
explanation.

To conclude, we repeat that the probability P(@) of an event @
must be interpreted as a number assigned to this event, as mass is assigned
to a body. In the development of the theory one should not worry
about the “physical meaning” of P(@). This is what is done in all
theories.

Consider, for example, circuit analysis. One assumes that a resistor
is a two-terminal device whose voltage is proportional to the current

_ v
R = ;GS (1’2)

But a physical resistor does not obey (1-2). It is a complicated concept
without obvious terminals, with distributed inductance and capacitance;
it generates thermal noise; and only within certain errors in certain
frequency ranges and with many other qualifications can a relationship
of the form (1-2) be claimed. Nevertheless, in the development of the
theory one ignores all these uncertainties. He assumes that a resistor
has a value R satisfying (1-2), and with the help of certain laws, he
develops circuit analysis. It would, indeed, be very confusing if at each
stage of this development he were concerned with the true meaning of E.

Like circuit analysis, or electromagnetic theory, or any other scien-
tific discipline, probability must be presented axiomatically. These
theories would, of course, be of no value to physics unless they could help
us solve real problems We should be able to assign specific, if only
approximate, values to real resistors or probablhtles to certain events
(step 1); we should also be able to give physical meaning to the quantities
that were derived from the theory (step 3). This link between idealized
concepts and the physical world is essential, but must be separated from
the purely logical structure of each theory (step 2).



