ALENBTUCKER R |

PROGRAMMING
LANGUAGES

Allen B. Tucker, Jr.

Georgetown University

<

McGRAW-HILL BOOK COMPANY

New York St. Louis San Francisco Auckland Bogota Diisseldorf
Johannesburg London Madrid Mexico Montreal New Delhi Panama Paris
_ S3o Paulo Singapore Sydney Tokyo . Toronto

PROGRAMMING LANGUAGES

Copyright © 1977 by McGraw-Hill, Inc. All rights reserved. Printed
in the United States of America. No part of this publication may be re-
produced, stored in a retrieval systemy or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording, or other-
wise, without the prior written permission of the publisher.

1234567890 DODO 783210987

This book was set in Helvetica by Progressive Typographers. The
editors were Peter D. Nalle, Claudia A. Hepburn, and Matthew Cahill;-
the production superviso was Leroy A. Young. The drawings were
done by Long Island Technical Illustrators.

R. R. Donnelley & Sons Company was printer and binder.

Library of Congress Cataloging in Publication Data

Tucker, Allen B
Programming languages.

(McGraw-Hill computer science series)

Includes index.

1. Programming languages, (Electronic computers)
I. Title.
QA76.7.T8 001.6°'424 76-26031
ISBN 0-07-065415-8 '

Preface

Language is not an abstract construction of the learned, or of dictionary makers, but is
something arising out of the work, needs, ties, joys, affections, tastes, of long genera-
tions of humanity, and has its bases broad and low, close to the ground.

Walt Whitman
Slang in America

Whitman is of course referring to natural languages, rather than programming
languages. However, in light of the present distance between the view of
the designer and that of the professional programmer toward programming
languages, this statement might just as well represent the programmer’s view.
Most texts on programming languages tend to represent the designer’s
view rather than the programmer’s. They- discuss principles of language
design rather than applicatiops. Although principles are important to any
study of the subject, they should not be presented fo the exclusion of the
language needs of the various programming applications. After all, a pro-
gramming language is—first and foremost—a language for proéramming.-
This text attempt’s to unify the study of programming language principles
with the study of programming language applications. We take the pro- -
grammer’s point of view, as well as the designer’s. Thus, we present lan-
guage features that have value in day-to-day programming applications; we

xi

ol G B4R 33
w't)Ut)\jf‘:.n.

xil PREFACE

illustrate language strengths and weaknesses by showing their use in solving
various representative “benchmark™ problems; we run programs using a
variety of different computers and compilers; and we evaluate languages and
their compilers using uniform and meaningful evaluation criteria.

Six languages have been chosen for presentation, evaluation, and com-
parison in this text: ALGOL, FORTRAN, COBOL, PL/1, RPG, and
SNOBOL. These particular languages were selected because’ of their wide
usage, different functional and stylistic characteristics, and range of applica-
tions. One chapter is dedicated to each of these six languages. A brief
glimpse at the table of contents shows that the six language chapters have
mutually identical organizations. Moreover, the same examples and ex-
ercises are repeated in the different language chapters. These two character-
istics should encourage frequent cross-referencing between chapters as
different languages are studied.

Each language chapter also shows the application pf its language to one
or more representative benchmark programming problems, showing a com-
plete and operational implementation of the problem in that language. Fur-
thermore, the résulting programs were run on a variety of different computers
and compilers, in order to demonstrate the language’s transferability. Fi-
nally, these benchmark programs are used as a basis for evaluating the lan-
guage at the conclusion of its chapter.

Our criteria for language evaluation are fully developed and illustrated in
Chapter 1. In this chapter we support the view that the value of a language is
determined not only by its compiler’s performance (in terms of storage and
speed), but also by such characteristics as compile-time and execution-time
diagnostics, debugging features, built-in functions, and uniformity of expres-
sion. These characteristics are more difficult to evaluate than a compiler’s
speed since they are not quantifiable. However, they are of such central
importance to the overall quality of a language and its implementations that
they must be assessed as carefully as possible.

Chapter 8 concludes the text with a comparative evaluation of the six
languages in the different application areas that they were designed to serve.
These comparisons use the same criteria developed in Chapter 1 and used
throughout the language chapters (2 to 7). In Chapter 8 we also discuss
factors other than language quality (e.g., the programmer market) that tend to
influence programming language selection and usage. ‘

This book was written primarily for use as the text in a junior-senior-
graduate level course in programming languages (coutse I2 in the ACM 1968
curriculum guidelines, or course SE 4 in the 1EEE model curriculum). This is
not an introductory text. We assume that the reader has a sound knowledge
of programming and at least one programming language.

Chapters 1 and 8 should be included in any one-semester course using
this text. Beyond that, any selection can be made from among the six language
chapters since they are mutually independent. The particular languages

PREFACE xiii

selected for study will depend on the students’ particular language experience
and the instructor’s preferences. For example, if a class has significant PL/I
and FORTRAN experience, the instructor may elect to cover the ALGOL,
COBOL, and SNOBOL chapters, in addition to Chapters 1 and 8.

Naturally, the study of three different languages in a one-semester course
will not vield the depth of knowledge in any one language that would have
been gained in a “one-language’” course. - However, the student should learn
enough about each language to use it, to constructively evaluate it, and to
compare it with other languages in an application area. This is our basic
educational objective.

The student should also gain a comprehensive basis for evaluating pro-
gramming languages from this experience. That basis can, in fact, be applied
to languages other than those presented in this book. Such an ability is
essential for those who intend to contribute to the design and implementation
of future programming languages.

This text may also be used by professional programmers and pro-
gramming supervisors who would like to widen their perspective on languages,
compilers, and programming applications. For instance, a COBOL or
FORTRAN programmer can use this book to get a quick and nontrivial
introduction to PL/I, thus gaining a basis for constructively evaluating PL/1
for use in his or her own applications. Since the FORTRAN and PL/I
chapters are identically organized and contain programs that solve the same
benchmark problems, the programmer has a direct basis for comparatively
evaluating the two languages in the scientific application area. The same can
be done for COBOL and PL/I, and thus the two languages can be meaning-
fully compared in the data processing application area.

The exercises at the end of each chapter are designed to put the reader
into an active, rather than a passive, role with each language. Some ex-
ercises simply review the reader’s understanding of essential language fea-
tures, such as writing subprograms. Other exercises, however, require the
reader to write and debug a program using the language, and then to evaluate
the language on the basis of this experience. Since the text teaches each
language, including implementation dependent differences, the student should
require no supplementary materials other than a knowledge of the “job con-
trol” cards required at the student’s own computer installation.

When studying programming languages, one must always be careful to
distinguish between the language itself and the particular machines, operating
systems, and compilers which support it. To emphasize this distinction, we
have taken two basic steps throughout this text. First, we use the standard
(or commonly accepted) version as the authority for a language’s definition.
Features that are available only for certain cdmpilers are presented in a
separate part of the chapter. We have also run the benchmark programs for
each language on at least two different machines and/or compilers. Thus, our
language evaluations and comparisons are highly machine independent.

xilv PREFACE

‘The different machines used are the following:

Burroughs B6700

ChC Cyber 70
DEC PDP-10
Honeywell 6000
IBM 370/145

UNIVAC 1108

It would be neither practical nor instructive to run all the benchmark pro-
grams on all of these machines. However, in.a comparison of two different
languages’ compile and execute speeds for the same benchmark programming
problem, it is essential that the two programs be run on the same machine
and operating system environment. We thus ran every benchmark program at
least once on the same machine and operating system (the IBM 370-145 OS-
MVT system since it was the one most accessible to the author). The results
of those runs are used in Chapter 8 as the primary basis for comparing compile
and execute speeds. Concurrently, the benchmark program listings shown in
Chapters 2 to 7 must unavoidably reflect some IBM implementation dependent
characteristics. We feel that these have been minimized. Furthermore, the
text of each chapter identifies implementation dependent language features.
Thus readers may readily adapt any of our benchmark programs for running at
their own installations.

Although it is not the main purpose of this book to teach programming
style, our exhibition of certain stylistic preferences is unavoidable. In the
ALGOL and PL/I chapters, our programs reflect a structured programming
style. This was also possible to a lesser extent in the FORTRAN and
COBOL chapters. In all but the RPG chapter, our programs make extensive
and mutually consistent use of subprogramming facilities. A reasonable
level of commentary documentation is provided throughout all the program
listings. ’ . ’
Permit us to add one final thought concerning objectivity. The relative
merits of different programming languages have continually been a subject of
passionate controversy. The most avid proponents of a language often have
“difficulty being objective when debating its merits. Each of us, as program- '
mers, has our own personal “best friend” language. In your work with this
book, try to put aside your own biases about particular languages, especially
the ones you know the best. - By doing this, we can all gain new and con-
structive insights into the present arid future states of programming languages.

ACKNOWLEDGMENTS

This book results from the evolution of an attitude toward programming lan-
guages. ‘Two particular individuals have had special influence on this attitude,
and I would like to acknowledge them. Mr. Carl Nelson—a colleague pro-

PREFACE xv

grammer and systems analyst at Norton Company in Worcester, Massachu-
setts, from 1963 to 1967—taught me many practical aspects of good pro-
gramming style and design. Professor Albert Grau—a teacher and advisor at
Northwestern University from 1967 to 1970—gave me a new and important
perspective on the influence of ALGOL on the design and implementation of
programming languages.

Another important characteristic of this book is its demonstration that
programs in the various languages are reasonably transferable among different
machines and compilers. To do the actual runs required many hours of pre-
paring control cards, converting decks between ASCII, EBCDIC, and other
character sets, scheduling the runs, diagnosing disparate error messages, and
so forth. The following individuals and institutions helped me tremendously
with this effort, and I thank them sincerely.

Richard Bonano Catholic University of America

Ira Gold University of Maryland

Gregory Hislop Queen’s University

Jan Larsen and Lloyd Wall Georgetown University

Ralph Popp ' Honeywell Information Systems, Inc.
William Ulman Utility Network of America

Thanks are also due to Giuliano Gnugnoll, who contributed to this
book’s initial design, and to Herbert Maisel, who gave me the time to write it.
A special note of appreciation goes to Virginia Stehman and Maida Tucker for
their tireless typing, proofreading, and editing of the manuscript, especially at
stages when it was in very rough form.

To my parents, Allen and Louise Tucker, goes my sincerest appreciation
for all they have given me. Finally, to my family—Maida, Jenny, and Brian—
I am grateful for their continual love and support, especially during the times
that this book’s development received more of my attention than it deserved.

Allen B. Tucker, Jr.

Contents

PREFACE xi

1 INTRODUCTION AND OBJECTIVES 1
1-1 A Selection of Six Languages 2
1-2 Learning the Languages 4
1-3 Using the Languages 5

1-3.1 The Four Application Areas 6

1-3.2 The Six Case Studies ’ 8

1-3.3 Implementing the Case Studies 10

1-4 Evaluating and Comparing the Languages 11

1-4.1 Effectiveness versus Efficiency 12
1-4.2 The Case Studies as Benchmarks of Langua ge

Effectiveness 12

1-4.3 Comparing High-Level Languages 13

1-44 A Basis for Language Evaluation and Comparison 13

2 ALGOL 19

2-1 Introduction to ALGOL 19

2-1.1 Brief History of ALGOL 19

vill CONTENTS

2-2

2-3

2-1.2 Implementations and Variations of ALGOL
2-1.3 Major Applications Areas of ALGOL
Writing ALGOL Programs

2-2.1 Data Types and Constants

2-2.2 Names, Variables, and Data Structures
2-2.3 Basic Statements

2-2.4 Input-Output Conventions

2-2.5 Subprograms

2-2.6 Complete Programs

2-2.7 Additional Features

Applications of ALGOL

2-3.1 ALGOL Case Study Implementation

2-3.2 Implementation Dependent Features of ALGOL
2-3.3 Overall Evaluation of ALGOL

3 FORTRAN

4

3-1

3-2

3-3

Introduction to FORTRAN

3-1.1 Brief History of FORTRAN

3-1.2 Implementations and Variations of FORTRAN
3-1.3 Major Applications of FORTRAN

Writing FORTRAN Programs

3-2.1 Data Types and Constants

3-2.2 Names, Variables, and Data Structures

3-2.3 Basic Statements

3-2.4 Input-Output Conventions

3-2.5 Subprograms

3-2.6 Complete Programs

3-2.7 Additional Features

Applications of FORTRAN

3-3.1 FORTRAN Case Study Implementations

3-3.2 Implementation Dependent Features of FORTRAN
3-3.3 Overall Evaluation of FORTRAN

COBOL

4-1

4-2

Introduction to COBOL

4-1.1 Brief History of COBOL

4-1.2 Implementations and Variations of COBOL
4-1.3 Major Applications of COBOL

Writing COBOL Programs

4-2.1 Data Types and Constants

4-2.2 Names, Variables, and Data Structures
4-2.3 Basic Statements

4-2.4 Input-Output Conventions

4-2.5 Subprograms

4-2.6 Co;nplete Programs

4-2.7 Additional Features

21
21
22
22
23
26
37
42
51
53
54
54
57
62

64
64
64
66
67
67
67
69
72
85
93

102

103

103

104

113

119

122
123
123
124
124 .
125
126
127
139
161
168
172
173

4-3

5 PL/
5-1

5-2

5-3

6-2

6-3

Applications of COBOL
4-3.1 COBOL Case Study.Implementations

4-3.2 Implementation Dependent Features of COBOL

4-3.3 Overall Evaluation of COBOL

Introduction to PL/I

5-1.1 Brief History of PL|I

5-1.2 Implementations and Variations of PL[I
5-1.3 Major Applications of PL|I

Writing PL/I Programs

5-2.1 Data Types and Constants

5-2.2 Names, Variables, and Data Structures
5-2.3 Basic Statements

5-2.4 Input-Output Conventions

5-2.5 Subprograms ‘

5-2.6 Complete Programs

5-2.7 Additional Features

Applications of PL/I

5-3.1 PL[I Case Study Implementations

5-3.2 Implementation Dependent Features of PL/I
5-3.3 Overall Evaluation of PL[I

Introduction to RPG

6-1.1 Brief History of RPG

6-1.2 Implementations and Variations of RPG
6-1.3 Major Applications of RPG

Writing RPG Programs

6-2.1 Data Types and Constants

6-2.2 Names, Variables, and Data Structures
6-2.3 Basic Statements

6-2.4 InputsQutput Conventions

6-2.5 Subprograms

6-2.6 Complete Programs

6-2.7 Additional Features

Applications of RPG

6-3.1 RPG Case Study Implementation

6-3.2 Implementation Dependent Features of RPG
6-3.3 Overall Evaluation of RPG

7 SNOBOL

7-1

Introduction to SNOBOL

7-1.1 Brief History of SNOBOL

7-1.2 Iryplementa,tions and Variations of SNOBOL
7-1.3 Major Applications of SNOBOL

CONTENTS ix

180
180
191
193

197
197
97
198
198
199
199
202
211
232
249
263
264

275

276

289
296

299
299
299

300

300

300
304
304
310
315
322
323
323
332
332
335
336

339
339
339

340

340

x CONTENTS

7-2

7-3

Writing SNOBOL Programs

7-2.1 Data Types and Constants

7-2.2 Names, Variables, and Data Structures
7-2.3 Basic Spatements

7-2.4 Input-Output Conventions

7-2.5 Subprograms

7-2.6 Complete Programs

7-2.7 Additional Features

Applications of SNOBOL

7-3.1 SNOBOL Case Study Implementations
7-3.2 Implementation Dependent Features of SN OBOL
7-3.3 Overall Evaluation of SNOBOL

8 COMPARATIVE EVALUATION AND CONCLUSIONS

8-1

8-2

8-3

8-4

8-5
8-6

A Basis for Language Comparison—Review and
Refinement
Comparisons in the Scientific Application Area (ALGOL,
FORTRAN, and PL/I)
8-2.1 Programming Features
8-2.2 Implementation Dependent Features
8-2.3 Efficiency
Comparisons in the Data Processing Application Area
(COBOL, PL/1, and RPG)
8-3.1 Programming Features
8-3.2 Implementation Dependent F eatures
8-3.3 Efficiency
Comparisons in the Text Processing Application Area
(PL/I and SNOBOL)
8-4.1 Programming Features
8-4.2 Implementation Dependent Features
8-4.3 Efficiency
Other Factors Influencing Language Selection
The Future of Programming Languages

APPENDIXES

mHmy oW

INDEX

Case Study 1—Tabulation and Statlstlcs

Case Study 2—Matrix Inversion

Case Study 3—Sales Summary

Case Study 4—Employee Master File Maintenance

"Case Study 5—Mailing List Edit

Case Study 6—Text Formatter

341
341
342
344
357
359
362

363 -

367
367
375
376

379
380

382
383
384
385
385
385
387
388

388
88
389
390
390

394

397
397

- 401

406
413
422
426

431

1

INTRODUCTION AND OBJECTIVES

Our purpose in this text is to study the main features of six widely used pro-
gramming languages, and then to evaluate their respective strengths and
weaknesses in the application areas which they were designed to serve.

To attain this end, we will not only study the principles of language de-
sign, which include the evaluation of expressions, dynamic storage alloca-
tion, recursion, and so forth. We will also study the applications of program-
ming tanguages. This will enable us to focus attention on the special features
that these languages possess, so that we may become equipped to judge
how well they support productive programming.

Although this is an ambitious task, such a level of understanding about
languages and their applications ought to be widely attained. This chapter
presents our overall perspective on programming languages, their uses, and
their evaluation. Here also we present the basis we will use for evaluating
languages throughout the remainder of this text. ,

A “high-level language” has a programming style and functional capa-

2 PROGRAMMING LANGUAGES

bilities that render it closer to a programmer's natural language of discourse
than a “"machine-lavel language.” For example, a scientific programmer
using a high-level language can directly state Z = X + Y * W to denote an
evaluation of the algebraic expression X + YW and an identification of the re-
sult as Z. Similarly, a data processing programmer using a high-level lan-
guage can directly state “WRITE A-LINE AFTER ADVANCING 2 LINES” to
denote a transfer of data to a specific line of the printed page. To specify
either of thgse actions in a machine-leve! language, the programmer must use
a number of statements, rather than just one, and encode them within more
strict syntactic and semantic constraints. :

For a language to be high level, it should be substantially independent
in its definition from any. particular computer’s architectural characteristics,
instruction set, word length, internal speeds, input-output devices, and so
forth. This independence implies that a high-level language must be imple-
mented with a relatively sophisticated kind of software, specifically a com-
piler or an interpreter. The nature of translation from a high-level language to
a machine-level language for a specific computer is therefore necessarily
complex. By way of comparison, the task of an assembler to translate from
symbolic machine-level language to machine language is much more
straightforward. ‘

However, high-level languages are not as close in many respects to the
programmer's medium of discourse as “declarative” (or "very high-level”)
languages that are found in data-base management systems, statistics
packages, and so forth. Declarative languages are distinguished by the fact
that they principally allow the user to prescribe what to do rather than how to
do it. High-level languages, however, retain as their major component the
algorithmic capability. This gives the programmer the tools to express rather
precisely how an application is to be performed. However, high-level lan-
guages are not altogether void of declarative content. For example, COBOL
has a “report-writer' feature that allows the programmer to easily define the
format of a printed report. Similarly, FORTRAN has a number of “standard”
functions (such as a square-root calculator) which, when referenced, deliver
the desired result directly.

1-1 A SELECTION OF SIX LANGUAGES

It would be impossible to present any large number of the well-known high-
level languages and leave the reader with a concrete understanding of their
different capabilities and relative merits. In addition, it would be irrespon-
sible for us to present a language solely because it has “academically inter-
esting” or “promising” features. The thought of such a presentation is fasci-
nating enough, but it would not serve our main objective.

~ We have therefore made a very conservative selection of high-level lan-
guages for presentation in this text. These languages have been selected on

INTRODUCTION AND OBJECTIVES 3

the basis of their impact on language development, their widespread avail-
ability, and their proven usefulness to practicing programmers. Furthermore,
one reasonably sized volume could not do justice to more than six languages.
Thus we have omitted certain languages that might otherwise have been in-
cluded. The six high-level languages that we have chosen for presentation
and discussion are ALGOL, FORTRAN, COBOL, PL/l, RPG, and SNOBOL.

ALGOL was chosen primarily for its strong influence on subsequent lan-
guage development. Indeed, theré would be no PL/l if ALGOL had not first
introduced many fundamental principles of language design. Furthermore,
ALGOL has served as the primary vehicle for language standardization and
published algorithms in the journals of computing professionals. - FORTRAN
was chosen because it is the most widely used high-level language for scien-
tific and engineering applications. Similarly, COBOL is included because’
of its dominance as the most widely used language for data processing appli-
cations.

PL/l is included for many reasons. First, it is the first general-purpose
language to be implemented and widely used. Second, PL/I is a much
younger language than FORTRAN, ALGOL, or COBOL. Thus its program-
ming stylistics and built-in capabilities reflect both the experience gained
from these earlier languages and the processing capabilities introduced by
third-generation computers and operating systems. Third, although PL/
has not supplanted either FORTRAN or COBOL in their respective applica-
tion areas, its usage has steadily increased, its implementations have be-
come increasingly efficient, and it has recently become implemented on
computers outside the IBM 360/370 family. Fourth, the adqption of a national
standard for PL/I is, at this writing, imminent. For these reasons, PL/'s ver-
satility will be examined and evaluated in this text.

RPG is included because it represents the kind of language which is
often used in situations where expedient programming (i.e., a single run to
produce a special report in a short amount of time) is required. It is also
heavily used in small computer installations for their data processing appli-
cations.

Finally, SNOBOL is included because of its' special capabilities to
process text as data. [t is especially effective in the area of natural-language
analysis and translation. Additionally, SNOBOL is a powerful programming
language for data verification and editing. By comparison, COBOL and FOR-
TRAN are inadequate for performing such linguistic tasks; PL/! is adequate
(yet less elegant than SNOBOL) in this respect. The data verification problem
continues to be so important to the entire programming community that such
a language as SNOBOL ought to become widely known. Until recently,
SNOBOL was implemented only by an interpreter. This meant, of course, .
' that its programs ran very slowly and could not be translated to machine
code for use in a production environment. This is no longer the case. Thus
SNOBOL has become an efficient aiternative to other languages for text prot-
essing applications. '

4 PROGRAMMING LANGUAGES
1-2 LEARNING THE LANGUAGES

Before one can reasonably evaluate a language, he or she must attain a
working knowledge of it. Thus, our first task is to teach the main features of
the six languages.

This might be an impossible task if we had to assume that the reader has
no prior computing experience. This text, however, teaches the six lan-
guages in a way that exploits that experience. The basic method employed
here is “learning by association,” which-is encouraged by the text’s following
organizational characteristics:

Common chapter format
Repetition of examples
Uniform metalanguage and notation

Each of the six language chapters (Chapters 2 to 7) is organized in the
same way. Each has three main sections. The first section presents an intro-
ductory overview of the language, including its history, its main features, and
the areas in which it has been effectively used. ‘

The second section presents a “textbook’” introduction to the main fea- .

tures of the language. lllustrative examples and exercises are provided so
that readers may adequately .test their understanding of the material pre-
sented. We do not focus our presentation on the trivial features of the lan-
guage, as one might find in an introductory text. Rather, we present what we
consider to be the most widely used features of the language, so that the
readers’ learning may be useful as well as informative.

The third section offers a deeper, more practical analysis of the lan-
guage. That analysis is based on our use of the language to implement one
or more “case study” problems. These case studies and their purpose are
discussed more fully in section 1-3. The third section concludes with an eval-
uation of the language. Our basis for evaluating languages is discussed in
section 1-4. '

The reader will notice that a particular example will be repeated in the
same place in each of the language chapters-where it is appropriate. Thus,
for example, when comparing two languages’ subprogramming features, the
feader will see those features displayed in the same example programming
problem.

One characteristic that tends to discourage cross-referencing among
languages is that each one has its own distinct metalanguage and syntax-
description technique. For instance, 2 FORTRAN *variable name” identifies
the same thing as an ALGOL “identifier” and a COBOL “data name.” Simi-
larly, ALGOL syntax is described (predominantly) in Backus-Naur form (BNF),
while the syntax of COBOL is described using a more informal blend of
grammar and English.

Our text tends to eliminate these hindrances. We have adopted a
fairly universal collection of metawords, such as “variable,” “array,” “loop,”

A Smae S

=1

INTRODUCTION AND OBJECTIVES 5

“constant,” and so forth, to describe notions with which the reader has a

high level of instinctive familiarity. Some readers may not agree entirely

with the word selections, but that disagreement should be greatly overshad-
owed by the degree of cross-referencing that the words permit. Similarly,

our syntax description conventions are simple and uniformly applied through-

out the six language chapters.!

With this level of uniformity in our presentation of the six languages, we
hope that readers will have frequent occasion to cross-reference between
chapiers to expedite learning. As a point of departure, they might begin this
study by reviewing a chapter that presents a language they already know.
They can then attack an unfamiiar language with the idea of merging their
own programming technjgues with its facilities for expressing them, using the
familiar language’s chapter for reinforcement.

1-3 USING THE LANGUAGES

Programmers trequently discover a great difference between learning a lan-
guage and effectively using it to accomplish actual applications. Most
courses do not deal with this latter question. Typically, a short-course intro-
duction to a language is so preoccupied with its trivial elements that the
course cannot adequately teach such language elements as implementation
dependent diagnostic messages, program tracing and other debugging facil-
ities, interprogram linkage, handling of interrupts, data error recovery, and
so forth.

We intend to bridge this gap. We have selected for solution six case
study problems. These are not short exercises. Rather, they are chosen as
representatives of the ones typically solved in day-to-day programming appli-
cations. In the third section of each language chapter, one or more case
studies are implemented in that language. The implementations will provide a
vehicle for discussing the practical and implementation dependent aspects of
the language. i

We also intend to provide detailed information on the whole question of
language and compiler selection in the context of different kinds of program-
ming tasks. To expedite this, we first characterize the following four applica-
tion areas:

Scientific applications

Data processing applications

Text processing applications
Systems programming applications -

' With the exception of RPG, which has no "syntax™ in this sense.

