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To both of them I owe more than this book - 1its
beginning, 1ts being completed and the best of 1its
contents. I owe them, in particular, their example:

it consists in confronting persons and situations 1in
l1ife and science selflessly and with an open mind,
and never abandoning the purpose of recognising what
is essential and true and to think and act

accordingly.



PREFACE

The theme of this book 1is a pair of concepts, already
recognised as belonging together by Leibniz, whose
mathematical development from Frege to Turing has laid the
theoretical foundation of computer science: the concept of
formal language as carrier of the precise expression of
meaning, facts ,problems, and the concept of algorithm or
calculus, that 1is, formally operating procedure for the
solution of precisely described questions and problems. The
book gives a unified introduction to the modern theory of
these concepts, to the way in which they developed first in
mathematical logic and computability theory and later in
automata theory, the theory of formal languages and complexity
theory. Apart from considering the fundamental themees, and
nowadays classical aspects of these areas, the subject matter
has been selected to give priority throughout to the new
aspects of traditional questions, results and methods which
have developed from the needs or knowledge of computer science
and particularly of complexity theory.

The aim of this book 1s twofold: to be a textbook for
introductory courses 1in the above-mentioned disciplines as
they occur in almost all current curricula of computer
sclence, logic and mathematics, but apart from this, to be a
monograph in which further results of new research (to a large
extent in textbook form for the first time) are systematically
presented and where the attempt is made to make explicit the
connections and analogies between a variety of concepts and
constructions. A price must be paid by the reader for the
knowledge I expect him to acquire when and if the experiment
is successful: for the beginner the first lectures of the text
will be difficult due to the profusion of concepts, remarks
and forward and backward references to currently posed
clusters of problems - particularly if he approaches the
material by self-study unaccompanied by lectures. My advice
is to 1initially skip over those parts which,, despite study,
are not understood; the connections will spr pﬁ_to mind on
second reading. LA

The following remarks on the use of the book might be
helpful; I have employed all parts of this book as the basis
of 1introductory or advanced lectures on the foundations of
theoretical computer science, automata theory and formal
language, logic, computability- and complexity-theory.. To
enable the reader to recognise the use and interdependence of
the various parts I have devised a detailed table of contents
and a graph of interdependence. The sections marked with # ’
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contain material which is not treated in the basic courses but
is suitable to follow them.

The arrangement of propositions as theorem, lemma, remark
and exercise mirrore the methodical significance of the
various states of affaire from a contemporary point of view.
It says nothing about hisetorical or individual achievements
to have proved these propositions for the first time. Many a
significant proposition becomes a simple example as a result
of later progress.

I strongly recommend beginners to work out with pencil and
paper, at first reading, all matters of routine or
intermediate steps which are not explained in detail and to
solve the exercises, or at least, try to solve them. By doing
this one not only learns whether one has really understood the
preceding subject matter and how to apply 1it, but one also
acquires a feeling for what 1is essential in the techniques
used. In this endeavour it might help that I have tried to
express complicated ideas occurring in proofs without the use
of formulas. The reader is advised to use this method of
intuitive, but precise substantive thinking which opens the
way to a deeper understanding.

The references to literature at the end of each section are
considered as completions of those references given in the

text.
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INTRODUCTION

To the towering achievement of the mathematics of the last
one hundred years belonge the formulation of a precise,
embracing concept of formal language and a general concept of

algorithm.

Already Leibniz had recognised that the creation of a
mathematically precise universal language for the expression
of arbitrary statements (characteristica universalls) was
related to the development of a sufficiently general <(concept
of) calculus (calculus ratiocinator) with regard to purely
computable, formal - we would nowadays say algorithmic -
decisions in scientific problems. To this corresponds the
distinction, fraquently made in linguistics, between
descriptive and iImperative elements or use of a language.
Language or elements of a language can, on the one hand, be
used for the description of states of affairs or facts, and on
the other hand for the formulation and communication of
directions (instructions) for the traneformation (computation)
of states of affairse and the construction (generation) of new
states; such transformations include the solution of problems
by the testing of objects for given properties (the so-called

decision procedures).

Mathematics yields a classical example of this distinction
with two basic types of mathematical problem formulation One
type of problem ise to formulate statements about objects
inside a mathematical language and prove them in a
mathematical system <(later formalised). The other is to
specify instructions for computation or generation
(enumeration) of objects within an algorithmic language.
Thus, it can be proved that sny two natural numbers have a
greatest common divisor, or a procedure for generating the
greatest common divisor can be developed. This example shows
how <close the connection between the descriptive and
imperative elemente of a language can be: to prove a
mathematical sentence o from an axiom system Ax by means
of the given rules R of a formal system, means to determine
the truth-value of the sentence "a follows from Ax by means
of R ™ by epecifying how a 1is finally obtained from Ax by
the formal transformations allowed in R.. The proof of the
sentence "To each x there exists a y with the property E
* can consist of a specification of a procedure which, for
arbitrary x produces a y with the property E (that ise,
of the description of euch a process including proof of ite

.afficacy.)

Another representative example - a typical phenomenon for
the development of algorithmic problem—solving méthods - is
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the following: frequently, the main difficulty in the solution
of a problem by computer program conseists of circumscribing,
bounding this problem exactly, excluding ewhat is not intended
to be part of the problem; tyhis is what is commonly called
“specifying” a problem. The efficiency of a programming
language and the degree of correctness of the programs
(describing algorithmic processes)formulated in it then
depends essentially on the quality of the specification
language as a vehicle of description and on the reliability of
the methods by which programs are constructed from the
specifications. The development of programming languages in
the past thirty years shows very clearly that the descriptive
and imperative use of language elements have an intrinsic
connection; the kernel of the demands of the ever advancing
programming language PROLOG rests on a single, flexible
language - firet order 1logic - being seimultaneously the
specification- and the programming-language, on one and the
same object able to be a statement (description of a problem
in the domain of a logic-language) and a program (algorithm
for the solution of this problem in the domain of a
programming language.)

The present, already extensive mathematical theory of the
concepte of algorithm and formal <(logic-) 1language has
dacisively influenced, conceptually and methodically, the
development of the way in which one deals with programmable
ccmputing equipment, and this influence promises to increase
rather than weaken in the future. From the conviction that a
mathematical theory loses nothing in intellectual interest by
helping one understand a part of reality, I have undertaken in
this book to give an introduction to algorithm theory and
logic, oriented to the requirements of computer science
without abandoning valuable traditions of the history of
thought or sacrificing mathematical merit.

The structure of the book 1s therefore as follows: the
first book is devoted to the theory of algorithms, the second
to logic. The theory of algorithmse <(also known as
computability theory> in its modern form 1is, above all, the
theory of the extent and complexity of classes of algorithms
and the automata and machines that realise them. It answers
such questions as : What 1s the meaning of "algorithm",
"universal programming language", ‘programmable computing
equipment”? (Ch.A> What are the principal, general limitations
of algorithmic problem-solving methods and what role is played
in this area logical or algorithmic means of description?
<(Ch.B). How can the efficiency and variety of algorithms be
ordered hierarchically according to criteria which
characterise algorithms by the available resources or purely
syntactically by their structure ? (Ch. C)

The basic questions of the book on logic are
correspondingly: Can mathematical precision be given to the
idea of an assertion being true independently of its eventual
meaning and only on the basis of its logical structure, and
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can such a logical concept of truth be characterised
algorithmically ? (Ch.D> TIs there a general algorithmic form
of mathematical deduction from given premises ?(Ch.E)> How are
the universality of a logical language and the universality of
a programming language related ? What is the relation between
the expressibility of a logical language and' the range of
algorithms represented in it ? What is the connection between
the syntactical logical complexity of expressions and the
computation complexity of algorithms represented by them 7
(Ch.F.» ’
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TERMINOLOGY AND PREiEQUISI'l‘BS

... We presuppose that the reader has such mathematical
maturity as could be acquired by a one- or two-semester
introductory course, although we seldom assume any specific
knowledge apart from the principle of inductive definition and
proof, and elementary facts of set theory. Where such special
items oécur, the mathematical facte wused are explicitly
mentioned .and the reader can find them in standard

introductory mathematical texts.

We therefore use the usual set-theoretical notation and
symbolism: .

2, ® are inclusion and strict or proper inclusion relations
between sets. Thue X2 Y and Y $§ X both mean that the set
X . includes Y. X>Y and Ye X both mean that X
properly includes Y, ie X2 Y and X # Y

C(X 1is the complement of the set X.

The logical operations will be written as follows:

for negation: not
for disfunction: or
for implication: implies
for conjunction: &, and
for equivalence: iff, exactly when
For the definitions we write x := y to mean that x is

defined to be equal to y.

IN denotes the set of natural numbers. The usual notation
for arithmetical operations on IN 1ie assumed except that for
more complicated expressions x or v a more readable
expression 1is obtained by writing exponentiation as x#y
rather than as the usual x> (x to power y). The symbol #
18 occasionally used for different purposes, but its meaning
should be clear from the context.

When not otherwise stated, by a function we shall always
mean a partial function £ & A x B which does not necessarily
have a defined value f(x>, that is a y € B such that
(x,y) € f, for each x € A This set-theoretical conception
of functions means the frequently useful identification of
f with its graph, Afl = {x, ; y= £}, We write:

O AIff Gy € Bry:(x y) € f (read f(x) ie defined)
forr 1ff not f(xo (read f(x) is undefined)

N
:
N
H
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A function f & A x B is called total iff (Vx € A (x4, We
use the identity-symbol for partial functions f, g based on
the equality-sign for defined values in the sense:

f(x) = g<x) 1ff
(FCx 3 1ff g(x)38) & (f(xr4 implies f(x)=g(x))

F=g 1iff (V: fo = gxo

By the notation f:A -» B we mean that f 1is a function
with domain of definition included in A eand whose range of
values is included in &

Frequently we shall use the so-called A-notation: for an
arbitrary term t 1in which, besides x, other variables may
occur 1in the role of parameters, Ax. (0 denotes that
function which assigns the value t(x) to x Correspondingly,
we write Ax. PO for predicates (relations or properties).
For the parametrisation of a function by "parsmeters" (parts

of its sequence of arguments) x we write f. := Ay. f(x, .

The place-number n of functions or predicates we shall
give 1in the forms ferme, pPcr2? raespectively, where
appropriate. Where such a notation is lacking it is assumed
that a proper determination of the number of srgument places
has been defined. Also, for a class F of functions we write
Fema for (f‘('m:'; f € FY,

For the characteristic function of a predicate P we write
é€p, where Ea(x) € {0, 1) and ¢§p(x) = 1 in case P(x) (read:
P holds.on x), Ex(x) = 0 otherwise. 8

We shall frequently use the following two operations of
iteration of functions f and g

fe := 1d {(identity function), fne! 1= fofr
ITter<NH{x, N := Ffr(x)
By the iteration of f by 8 written o we mean

“iteration of f until 8 takes the value [o] on the
computed value", that is :

1. (HLH Lff (3n € IND: frix)i & g(f~(x))=0.

2. If CH (x4, then (OG> = () holds for the
smallest n with g(f7"(x>> = 0.

By an alphabet A we understand a finite, non-empty set

{a,,...,8,) whose elements are called symbols or letters. A
finite sequence of letters (from A we call a word <(on A
and write A* := {w; w word on A). The empty word (that lis,
the sequence of length O of symbols) we denote by A We
put A* := A* - {A}). The length of the word w 1is denoted by
I
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