-~ COMPUTABILITY,
COMPLEXITY,
LOGIC

R T T

E. BORGE#R




COMPUTABILITY,
COMPLEXITY,
LOGIC

E. BORGER
Department of Informatics
University of Pisa
Pisa. ltaly

NORTH-HOLLAND
AMSTERDAM « NEW YORK « OXFORD * TOKYO



ELSEVIER SCIENCE PUBLISHERS B.V.
Sara Burgerhartstraat 25
P.O. Box 211, 1000 AE Amsterdam, The Netherlands

Distributors for the U.S.A. and Canada:

ELSEVIER SCIENCE PUBLISHING COMPANY, INC.
655 Avenue of the Americas
New York, N.Y. 10010, US.A.

Library of Congress Catatoging~in-Publication Data

Borger, E. (Egon), 1946~
[Berechenbarkeit, Komplexitat, Logik. English)
Computability, complexity, logic / E. Borger.
p. cm. -- (Studies 1n logic and the foundations of
mathematics ; v. 128)
Translation of: Berechenbarkeit, Komplexitat, Logitk.
Bibliography: p.
Includes 1ndex.
ISBN 0-444-87406-2
1. Computable functions. 2. Computational complexity. 3. Logic,

Syabolic and mathematical, I. Title. II. Series.
0A9.59.86713 1989
511.3--dc20 89-33636

CIP

ISBN: 0 444 87406 2
© ELSEVIER SCIENCE PUBLISHERS B.V., 1989

This volume is a translation of ‘Berechenbarkeit, Komplexitit, Logik® which was published by
F. Vieweg & Sohn Verlagsgesellschaft GmbH. It has been, translated into the English language and
prepared for offset printing by J. C. Harvey.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or trans-

mitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,

without the prior written permission of the publisher, Elsevier Science Publishers B.V./Physical Science
and Engineering Division, P.O. Box 103, 1000 AC Amsterdam, The Netherlands.

Special regulations for readers in the U.S.A. - This publication has been registered with the Copyright
Clearance Center Inc. (CCC), Salem, Massachusetts. Information can be obtained from the CCC about
conditions under which photocopies of parts of this publication may be made in the U.S.A. All other
copyright questions, including photocopying outside of the U.S.A., should be referred to the publisher.

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a
matter of products liability, negligence or otherwise, or from any use or operation of any methods, pro-
ducts, instructions or ideas contained in the material herein.

PRINTED IN THE NETHERLANDS



This book 1is dedicated to
Donatella Barnocchli
and
Dieter R&dding
(#24.8. 1937, t4.6.1984)

To both of them I owe more than this book - 1its
beginning, 1ts being completed and the best of 1its
contents. I owe them, in particular, their example:

it consists in confronting persons and situations 1in
l1ife and science selflessly and with an open mind,
and never abandoning the purpose of recognising what
is essential and true and to think and act

accordingly.



PREFACE

The theme of this book 1is a pair of concepts, already
recognised as belonging together by Leibniz, whose
mathematical development from Frege to Turing has laid the
theoretical foundation of computer science: the concept of
formal language as carrier of the precise expression of
meaning, facts ,problems, and the concept of algorithm or
calculus, that 1is, formally operating procedure for the
solution of precisely described questions and problems. The
book gives a unified introduction to the modern theory of
these concepts, to the way in which they developed first in
mathematical logic and computability theory and later in
automata theory, the theory of formal languages and complexity
theory. Apart from considering the fundamental themees, and
nowadays classical aspects of these areas, the subject matter
has been selected to give priority throughout to the new
aspects of traditional questions, results and methods which
have developed from the needs or knowledge of computer science
and particularly of complexity theory.

The aim of this book 1s twofold: to be a textbook for
introductory courses 1in the above-mentioned disciplines as
they occur in almost all current curricula of computer
sclence, logic and mathematics, but apart from this, to be a
monograph in which further results of new research (to a large
extent in textbook form for the first time) are systematically
presented and where the attempt is made to make explicit the
connections and analogies between a variety of concepts and
constructions. A price must be paid by the reader for the
knowledge I expect him to acquire when and if the experiment
is successful: for the beginner the first lectures of the text
will be difficult due to the profusion of concepts, remarks
and forward and backward references to currently posed
clusters of problems - particularly if he approaches the
material by self-study unaccompanied by lectures. My advice
is to 1initially skip over those parts which,, despite study,
are not understood; the connections will spr pﬁ_to mind on
second reading. LA

The following remarks on the use of the book might be
helpful; I have employed all parts of this book as the basis
of 1introductory or advanced lectures on the foundations of
theoretical computer science, automata theory and formal
language, logic, computability- and complexity-theory.. To
enable the reader to recognise the use and interdependence of
the various parts I have devised a detailed table of contents
and a graph of interdependence. The sections marked with # ’



IV Preface

contain material which is not treated in the basic courses but
is suitable to follow them.

The arrangement of propositions as theorem, lemma, remark
and exercise mirrore the methodical significance of the
various states of affaire from a contemporary point of view.
It says nothing about hisetorical or individual achievements
to have proved these propositions for the first time. Many a
significant proposition becomes a simple example as a result
of later progress.

I strongly recommend beginners to work out with pencil and
paper, at first reading, all matters of routine or
intermediate steps which are not explained in detail and to
solve the exercises, or at least, try to solve them. By doing
this one not only learns whether one has really understood the
preceding subject matter and how to apply 1it, but one also
acquires a feeling for what 1is essential in the techniques
used. In this endeavour it might help that I have tried to
express complicated ideas occurring in proofs without the use
of formulas. The reader is advised to use this method of
intuitive, but precise substantive thinking which opens the
way to a deeper understanding.

The references to literature at the end of each section are
considered as completions of those references given in the

text.

I would like to express my heart-felt thanke to the many
persons who have helped with the work on this book in the past
years, by no means all of whom I am able to mention. I name
in particular the following colleagues and collaborators who
read the manuscript in whole or in part and who have given me
valuable criticisms: K. Ambos-Spies, H. Brdhmik, T. Brand,
A. Bruggemann, H. Fleischhack, J.Flum, G. Hensel, H. Kleine-
BUning, U. Lbwen, L. Mancini, K. May, W. R6dding,
H. Schwichtenberg, D.Spreen, J.StoltefuB, R.Verbeek, S.Wainer.

Separately I would 1like to thank: K.Ambos-Spies, whose
elaboration of one of my Dortmund logic lecturese I have
partially used in chapters D/E, and who has given valuable
help, particularly to SBII3; U.L8wen for a critical reading of
the entire manuscript and the preparation of the symbol- and
subject-indices; K.May for careful corrections and numerous
drawings; H.W.Rddding for the 1intricate control of the
bibliography.

I would especially 1like to thank U.Minning, R. Kthn,
J. Kossmann, P.Schoppe and K.Gruhlich for the precise
transposition of parts of several versions of my manuscript
into the type-script for the printer. U.Minning has borne the
main burden in this —~ her engaging and friendly manner has
often allowed me to forget thise arduous labour.

Finally, but not less heartily, I thank Walburga Rdédding
and many other colleaguee who, in the past difficult six



Preface
weeks, have given me their spontaneocus moral support, thereby
decisively helping me to complete this book.

Dortmund, 3.7.1985 EGON BORGER.

Note on the second edition At thie point I would like to
express heartfelt thanks té M. Kummer, P. Péppinghaus,
V. Sperechneider: mainly because of their 1list of errors
correctionse have been made in the second edition. At this
point also I thank in advance all thoee readers who show me

further errors.

Pisa, Spring 1986 EGON BURGER.



INTRODUCTION

To the towering achievement of the mathematics of the last
one hundred years belonge the formulation of a precise,
embracing concept of formal language and a general concept of

algorithm.

Already Leibniz had recognised that the creation of a
mathematically precise universal language for the expression
of arbitrary statements (characteristica universalls) was
related to the development of a sufficiently general <(concept
of) calculus (calculus ratiocinator) with regard to purely
computable, formal - we would nowadays say algorithmic -
decisions in scientific problems. To this corresponds the
distinction, fraquently made in linguistics, between
descriptive and iImperative elements or use of a language.
Language or elements of a language can, on the one hand, be
used for the description of states of affairs or facts, and on
the other hand for the formulation and communication of
directions (instructions) for the traneformation (computation)
of states of affairse and the construction (generation) of new
states; such transformations include the solution of problems
by the testing of objects for given properties (the so-called

decision procedures).

Mathematics yields a classical example of this distinction
with two basic types of mathematical problem formulation One
type of problem ise to formulate statements about objects
inside a mathematical language and prove them in a
mathematical system <(later formalised). The other is to
specify instructions for computation or generation
(enumeration) of objects within an algorithmic language.
Thus, it can be proved that sny two natural numbers have a
greatest common divisor, or a procedure for generating the
greatest common divisor can be developed. This example shows
how <close the connection between the descriptive and
imperative elemente of a language can be: to prove a
mathematical sentence o from an axiom system Ax by means
of the given rules R of a formal system, means to determine
the truth-value of the sentence "a follows from Ax by means
of R ™ by epecifying how a 1is finally obtained from Ax by
the formal transformations allowed in R.. The proof of the
sentence "To each x there exists a y with the property E
* can consist of a specification of a procedure which, for
arbitrary x produces a y with the property E (that ise,
of the description of euch a process including proof of ite

.afficacy.)

Another representative example - a typical phenomenon for
the development of algorithmic problem—solving méthods - is



XVI Introduction

the following: frequently, the main difficulty in the solution
of a problem by computer program conseists of circumscribing,
bounding this problem exactly, excluding ewhat is not intended
to be part of the problem; tyhis is what is commonly called
“specifying” a problem. The efficiency of a programming
language and the degree of correctness of the programs
(describing algorithmic processes)formulated in it then
depends essentially on the quality of the specification
language as a vehicle of description and on the reliability of
the methods by which programs are constructed from the
specifications. The development of programming languages in
the past thirty years shows very clearly that the descriptive
and imperative use of language elements have an intrinsic
connection; the kernel of the demands of the ever advancing
programming language PROLOG rests on a single, flexible
language - firet order 1logic - being seimultaneously the
specification- and the programming-language, on one and the
same object able to be a statement (description of a problem
in the domain of a logic-language) and a program (algorithm
for the solution of this problem in the domain of a
programming language.)

The present, already extensive mathematical theory of the
concepte of algorithm and formal <(logic-) 1language has
dacisively influenced, conceptually and methodically, the
development of the way in which one deals with programmable
ccmputing equipment, and this influence promises to increase
rather than weaken in the future. From the conviction that a
mathematical theory loses nothing in intellectual interest by
helping one understand a part of reality, I have undertaken in
this book to give an introduction to algorithm theory and
logic, oriented to the requirements of computer science
without abandoning valuable traditions of the history of
thought or sacrificing mathematical merit.

The structure of the book 1s therefore as follows: the
first book is devoted to the theory of algorithms, the second
to logic. The theory of algorithmse <(also known as
computability theory> in its modern form 1is, above all, the
theory of the extent and complexity of classes of algorithms
and the automata and machines that realise them. It answers
such questions as : What 1s the meaning of "algorithm",
"universal programming language", ‘programmable computing
equipment”? (Ch.A> What are the principal, general limitations
of algorithmic problem-solving methods and what role is played
in this area logical or algorithmic means of description?
<(Ch.B). How can the efficiency and variety of algorithms be
ordered hierarchically according to criteria which
characterise algorithms by the available resources or purely
syntactically by their structure ? (Ch. C)

The basic questions of the book on logic are
correspondingly: Can mathematical precision be given to the
idea of an assertion being true independently of its eventual
meaning and only on the basis of its logical structure, and



Introduction XVII

can such a logical concept of truth be characterised
algorithmically ? (Ch.D> TIs there a general algorithmic form
of mathematical deduction from given premises ?(Ch.E)> How are
the universality of a logical language and the universality of
a programming language related ? What is the relation between
the expressibility of a logical language and' the range of
algorithms represented in it ? What is the connection between
the syntactical logical complexity of expressions and the
computation complexity of algorithms represented by them 7
(Ch.F.» ’



XVIII Terminology

TERMINOLOGY AND PREiEQUISI'l‘BS

... We presuppose that the reader has such mathematical
maturity as could be acquired by a one- or two-semester
introductory course, although we seldom assume any specific
knowledge apart from the principle of inductive definition and
proof, and elementary facts of set theory. Where such special
items oécur, the mathematical facte wused are explicitly
mentioned .and the reader can find them in standard

introductory mathematical texts.

We therefore use the usual set-theoretical notation and
symbolism: .

2, ® are inclusion and strict or proper inclusion relations
between sets. Thue X2 Y and Y $§ X both mean that the set
X . includes Y. X>Y and Ye X both mean that X
properly includes Y, ie X2 Y and X # Y

C(X 1is the complement of the set X.

The logical operations will be written as follows:

for negation: not
for disfunction: or
for implication: implies
for conjunction: &, and
for equivalence: iff, exactly when
For the definitions we write x := y to mean that x is

defined to be equal to y.

IN denotes the set of natural numbers. The usual notation
for arithmetical operations on IN 1ie assumed except that for
more complicated expressions x or v a more readable
expression 1is obtained by writing exponentiation as x#y
rather than as the usual x> (x to power y). The symbol #
18 occasionally used for different purposes, but its meaning
should be clear from the context.

When not otherwise stated, by a function we shall always
mean a partial function £ & A x B which does not necessarily
have a defined value f(x>, that is a y € B such that
(x,y) € f, for each x € A This set-theoretical conception
of functions means the frequently useful identification of
f with its graph, Afl = {x, ; y= £}, We write:

O AIff Gy € Bry:(x y) € f (read f(x) ie defined)
forr 1ff not f(xo (read f(x) is undefined)

N
:
N
H



Terminology XI1X

A function f & A x B is called total iff (Vx € A (x4, We
use the identity-symbol for partial functions f, g based on
the equality-sign for defined values in the sense:

f(x) = g<x) 1ff
(FCx 3 1ff g(x)38) & (f(xr4 implies f(x)=g(x))

F=g 1iff (V: fo = gxo

By the notation f:A -» B we mean that f 1is a function
with domain of definition included in A eand whose range of
values is included in &

Frequently we shall use the so-called A-notation: for an
arbitrary term t 1in which, besides x, other variables may
occur 1in the role of parameters, Ax. (0 denotes that
function which assigns the value t(x) to x Correspondingly,
we write Ax. PO for predicates (relations or properties).
For the parametrisation of a function by "parsmeters" (parts

of its sequence of arguments) x we write f. := Ay. f(x, .

The place-number n of functions or predicates we shall
give 1in the forms ferme, pPcr2? raespectively, where
appropriate. Where such a notation is lacking it is assumed
that a proper determination of the number of srgument places
has been defined. Also, for a class F of functions we write
Fema for (f‘('m:'; f € FY,

For the characteristic function of a predicate P we write
é€p, where Ea(x) € {0, 1) and ¢§p(x) = 1 in case P(x) (read:
P holds.on x), Ex(x) = 0 otherwise. 8

We shall frequently use the following two operations of
iteration of functions f and g

fe := 1d {(identity function), fne! 1= fofr
ITter<NH{x, N := Ffr(x)
By the iteration of f by 8 written o we mean

“iteration of f until 8 takes the value [o] on the
computed value", that is :

1. (HLH Lff (3n € IND: frix)i & g(f~(x))=0.

2. If CH (x4, then (OG> = () holds for the
smallest n with g(f7"(x>> = 0.

By an alphabet A we understand a finite, non-empty set

{a,,...,8,) whose elements are called symbols or letters. A
finite sequence of letters (from A we call a word <(on A
and write A* := {w; w word on A). The empty word (that lis,
the sequence of length O of symbols) we denote by A We
put A* := A* - {A}). The length of the word w 1is denoted by
I



CONTENTS

Introduction XV
Terminology and prerequisites XVIIIX
Book One

ELEMENTARY THEORY OF COMPUTATION 1

Chapter A THE MATHEMATICAL CONCEPT OF ALGORITHM 2

PART I. CHURCH'S THESIS " 2

81. Explication of Concepts. Transition systems, 2
Computation systems, Machines (Syntax and Semantics of
Programs), Turing machines, structured (Turing- and
register-machine) programs (TO, RO).

2. Equivalence theorem. F, s F(TO) & F(TM), 26
LOOP-Program Synthesis for primitive recursive
functions, F(TM) € F(RO) € F,,. -

83. Excursus into the semantics of programs. 34
Equivalence of operational and denotational semantics
for RM-while programs, fixed-point meaning of programs,
proof of the fixed-point theorem.

64%. Extended equivalence theorem. Simulation of 37
other explication concepts: modular machines, 2-register
machines, Thue systems, Markov algorithms, ordered
vector addition systems <(Petri nets), Post calculi
(canonical and regular), Wang's non-erasing half-tape
machines, word register machines.

85. Church's Thesis - 48

3

PART II. UNIVERSAL PROGRAMS AND THE RECURSION THEOREM 51

81. Universal programs. Kleene normal form. 51
Acceptable universal programming system and effective
program transformations.

§2. Diagonalisation method. Recursion theorem: 58

fixed-point meaning (theorem of Rice), recurseion meaning
(implicit definitions: recursive enumeration of |
injective translation functions 1in G8del numbering,
isomorphism theorem for Gddel numberings, salf-
reproducing programs), parame ric effective version with
infinitely many fixed points.



VIII Contents

Chapter B COMPLEXITY OF ALGORITHMIC UNSOLVABILITY 68

PART I. RECURSIVELY UNSOLVABLE PROBLEMS (Reduction method) 68

81. Halting problem K  Special cases of Rice's 69
theorem.

82. Simple reductions of K Decieion problems of 71
universal computing systems, Post's correspondence
problem, Domino problem, R8dding's path problem.

§3%. Exponential diophantine equations Simulation 82
of RO.

S4%. Ax, ¥, z.x = y= 1& diophantine Pell equations. 89

PART II. THE ARITHMETICAL HIERARCHY AND DEGREES OF

UNSOLVABILITY 103

81. Recursively enumerable predicates ’ 103
Representation theorem. Universality.

82. Arithmetical hierarchy. Enumeration- and 108

hierarchy-theorems, representation theorem,

determination of complexity (infinity and cardinality
statements, arithmetical truth-concept)

83%. Reduction concepts and degrees of unsolvability. 114
Reduction concepts <(theorem of Post), index sets
(theorem of Rice and Shapiro, Z,-complete program
properties), creativity and Z,-completeness (thaorem of
Myhill), simple sets (=, versus =, versus Saa
theorem of Dekker and Yates), priority method (theorem
of Friedberg and Mu¢nik), complexity of the arithmetical
truth concept.

»
PART III.ABSTRACT COMPLEXITY OF COMPUTATION 144

81. S ~up phenomena. Abstract measures of 145
complexity, Blum's speed-up theorem, impossibility of
effective speed-up.

82. Functions of arbitrary complexity. Theorem of 155
Rabin-Blum—Meyer on functions of arbitrarily large
program— or computing—-time complexity, Blum's
program-shortening theorem, gap theorem, union theorem.

3¢, Decomposition theory for universal automata 162
Characterisation of the run-time-, input-, output-
transition~, and stop-functions of universal automata;

impossiblity of uniform recursive simulation bounds on
universal automata.



Contents IX

Chapter C RECURSIVENESS AND COMPLEXITY 172

PART I. COMPLEXITY CLASSES OF RECURSIVE FUNCTIONS 173

80. The k-tape Turing-machine model. Tape 173
reduction, tape- and time-compression, simulation
complexity of a universal program.

81, Time- and place- hierarchy theorems. Theorem 182
of FUrer.

§2. Complexity of non-deterministic programs 191

Theorem of Savitch.

PART II. COMPLEXITY CLASSES OF PRIMITIVE RECURSIVE 196
FUNCTIONS.
§1. Grzegorczyk hlerarchy theorem Bquivelence of 197

the characterisation by growth-rate (limited recursion,
excursus on Ackermann branches), recursion- and loop-
depth, computing-time complexity from Kleene normal form
with polynomially bounded or Ra-coding functions.

82%, E,.-Basis- and E.-computing time hierarchy theorem 211

63%. Ackermann function and Goodsteln sequences 220
Theorem of Goodstein, Kirby and Paris.

PART III POLYNOMIALLY- AND EXPONENTIALLY- BOUNDED 224
COMPLEXITY CLASSES.

81. NP-complete problems. Halting-, domino-, 226
partition—, knapsack-, clique-, Hamiltonian cycle-,
travelling salesman-, Iinteger-programming—problems.

82. Complate problems for PTAPE and exponential classes 240

PART IV FINITE AUTOMATA 242

81. Characterisation by {non-)deterministic 242
acceptors and regular expressions. Theorems of Rabin
and Scott, Kleene.

82. Characterisation by Indistinguichability 250

congruence relation Theorem of Myhill and Nerode with
corollaries (state minimisation, examples of non-regular
languages, loop lemma, 2-way automata ).

83%. Decomposition theorems. Product decomposition, : 256
modular decomposition (R6dding normal form in sequential
and parallel signal processing).



843,

PART V

§1.

§2.

83.

4.

854,

Contents

Small universal programs. 2-dimensional Turing 276
machine with 2 states and 4 1letters, 2-dimensional
Thue-system with 2 rules and 3 letters, PTAPE-complete

Loop problem.

CONTEXT—-FREE LANGUAGES 297
Normal forms of Chomsky and Greibach, 297
derivation trees.

Periodicity properties. Loop lemma , Parikh's 305

theorem, inductive characterisation through substitution
iteration.

Characterisation hy machines. Push-down automata, 311
closure properties.

Decision problems. Decidability theorem for 316
context-free and regular grammars, complexity of the
equivalence problem for regular expresslions,

undecidability theorem for context-free grammars,
impossibility of effective minimisation.

Comparison with the Chomsky hierarchy classes. 327
Intersection of regular with bracket languages, L-R
derivation restrictions of type-0O grammars, context-
dependent languages (space-requirement theorem and the
L.LBA problem).



X1

Contents
Book Two . 338
ELEMENTARY PREDICATE LOGIC '

Chapter D LOGICAL ANALYSIS OF THE TRUTd CONCEPT 337

PART I. SYNTAX AND SEMANTICS 337

§1. Formal languagee of the first order. 337

82. Interpretation of formal languages. 342

83. Hilbert calculus. 350

PART II. COMPLETENESS THEOREM : 357

81. Derivations and deduction thecrem for 357
sentence logic

82, Completeness of propositional logic. 361
(Lindenbaum maximisation process; analytical tables,
resolution )

83. Derivations and deduction theorem of the 367
predicate logic

84. Completeness of predicate logic. 372

PART III. CONSEQUENCES OF THE COMPLETENESS THEOREM 378

81. Weakness of expressibility of PL 1. Theorem of 378
Skelem, compactness theorem, non-characterisability of
the concept of infiniteness, non-standard models of
number theory.

§2#%. Second order predicate logic and type theory. 382
characterisation of finiteness and countability and of
(IN; 0, +1) 1in second order; languages of n-th order.

83. Canonical satisfiability. Skdélem normal form, 387
(minimal) Herbrand models, predicate logic resolution,
procedural interpretation of Horn formulas, completeness
of SLD-resolution.

Chapter E. LOGICAL ANALYSIS OF THE CONCEPT OF PROOF. 400

PART I. GENTZEN'S CALCULUS LK. 401

81. . The celculus LX. 401

82. Equivalence to the Hilbert calculus.. 404

RY



