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Preface

A course in numerical analysis has become accepted as an important ingre-
dient in the undergraduate education of engineers and scientists. Numerical
Methods in Engineering and Science reflects my experience in teaching such a
course for several years. Related work in industry and research has influenced my
choice of content and method of presentation.

Most students at the undergraduate level will have had, at the very least, an
introductory course in ordinary differential equations. Tutorial appendixes on
complex variables, determinants, partial differentiation, and Taylor expansions are
included at the end of this book. Other background material is developed as needed.
For example, Chapter 2 (linear equations) begins with an outline of matrix algebra;
this will represent review material for some students, but it will spare others the
necessity of consulting references. Proofs for almost all results of importance are
given, in what I hope is palatable form. Overall, the book should be reasonably
self-contained.

A number of illustrative computer programs are provided. The language
chosen is FORTRAN (ANSI 77) because of the wide availability of service and
application programs in that language. I am aware of course that some readers, for
good reasons, will prefer other languages; however, since most languages are suffi-
ciently similar to FORTRAN there should be little difficulty in translating from
one language to another as required.

I have not tried to include an extensive collection of library-type programs.
At this stage, it seems to me that it is important for the student to acquire facility
in writing actual programs (and this is called for, in the text and in exercises).
This kind of programming experience should help solidify the understanding of
numerical techniques, as well as provide perspective for the eventual use of
subroutine libraries.

This book contains more material than would normally be included in an
introductory undergraduate course. I feel, however, that it is useful to cover the
various topics with some degree of completeness so that the book may serve the
student as a subsequent reference and source of ideas. Illustrative examples are
given throughout the text. It is important for the student to work problems, and a
fairly large number of problems that illustrate (and in some cases, extend) the
material of the text will be found at the end of each chapter. In a course based on
this book, the instructor may want to supplement these problems with some of the
usual kind of drill-type exercises.

I am grateful to many past and present associates who have had an influence
on Numerical Methods in Engineering and Science. Several colleagues have been

ix



x / Preface

kind enough to critically read the manuscript, in various stages of preparation, and
to offer suggestions concerning appropriate material or treatment. I want to express
particular appreciation to Professors David Benney (Massachusetts Institute of
Technology), Graham Carey (University of Texas), Walter Christiansen (Univer-
sity of Washington), Robin Esch (Boston University), Robert MacCormack (Stan-
ford University), and Chris Newbery (University of Kentucky). The responsibility
for inaccuracies or for inelegances of exposition remains, of course, mine alone,

It is a pleasure to thank Kathy Hamilton for her painstaking efforts to make
everything legible and for her patience in dealing with many changes. In the
process, she has become something of a numerical analyst herself.

CARL E. PEARSON
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CHAPTER

1

NONLINEAR EQUATIONS

The purpose of this chapter is to discuss a number of methods applicable to
the solution of a single nonlinear equation, usually algebraic or transcendental in
character. Sets of equations are considered in Chapter 2 (linear case) and Chapter
3 (nonlinear case).

1.1 A SAMPLE PROBLEM

Suppose that electrical cables are to be strung between a series of towers. To
design the towers one has to know the tension in the cables, and this depends on
the ground clearance desired. Consider such a cable, as shown in Figure 1.1. It is
a standard exercise in differential equations texts to show that the cable takes the
shape of a catenary. If p denotes the linear density of the cable, T the horizontal
component of the cable tension, and g the acceleration of gravity, then in terms of
horizontal distance s, the height w of the cable is given by

|
— [cosh as — 1]
[0 4

w_‘—..
_l{ea:+e—as l:[ 11
_a 2 ’ (')

where a = pg/T. Here the origin of the (s, w) coordinate system has been made
to coincide with the lowest point on the cable, as shown in Figure 1.1.

If [ denotes the half-span, then at s = [ the height of the cable above its lowest
point is given by
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Figure 1.1. Cable problem.

1
h = —[cosh al — 1] . 1.2)
o

The problem is then to determine « (and so 7)) if the sag & is specified. It is often
useful to introduce dimensionless variables, and we do so here by the definitions
og! h
==, A=-.
T l
The quantities x and \ are dimensionless. Equation (1.2) becomes
Ax =coshx — 1. (1.3)

This equation is now to be solved for x, where \ is specified. This problem will
serve as an example to which several solution methods will be applied. The problem
is, of course, a rather simple one, but it has the advantage that we can concentrate
on solution methods without encumbrances of algebraic complexity.

It is worthwhile to begin with a graphical look at Equation (1.3). Suppose, to
be specific, that the designer’s choice of cable clearance transforms into a desired
value of .1575 for N\. Then we could plot the two curves

y = 0.1575x , y=coshx — 1

and find that value of x at which the curves intersect. This is done in Figure 1.2
and we obtain x = .32. A refinement of the graph would give a more accurate
value for x, but this process could become cumbersome if several significant figures
were required, if the equation to be solved were a complicated one, or if solutions
corresponding to several values of A were required. Consequently, it is appropriate
to look for more efficient methods. Nevertheless, a simple preliminary sketch is
often useful—it can protect us against a future gross error and it can also provide
a starting value for an iterative process.

We remark that it is sometimes useful to interchange the roles of dependent
and independent variables. Our interest is in solving Equation (1.3) for x if A is
specified. We could equally well think of Equation (1.3) as determining A when x
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| L
0.32 0.5 X

Figure 1.2. Graphical determination of x.

Y

is given. It would be easy to plot \ as a function of x; if a number of values of A
are to be considered, the corresponding values of x could be read off from this
graph. Of course, this particular equation happens to be of rather simple form—
the parameter A could easily appear on both sides of a more complicated equation.

1.2 REPEATED BISECTION METHOD

Define
y=coshx —Ax —1. (1.4)

Then the problem of Section 1.1 requires us to find that value of x, say x,, for
which y vanishes. Again, we take A = .1575.

The idea of the bisection method is to start with a pair of values for x, say x,
and x,, for which the corresponding values for y (denoted by y, and y,, respectively)
are of opposite sign. Then x, must lie between x; and x,. We calculate next the
midpoint value x; = 3(x, + x,) and determine the corresponding quantity y,. If y,
has the same sign as y;, we deduce that x, must lie between the pair x, and x,,
whereas if y; has the same sign as y,, then x, must lie between x, and x,. Of these
two subintervals the one that is known to contain x, is then bisected again, and the
process continues iteratively.

Figure 1.3 shows the first few steps for the case of Equation (1.4), with
N = .1575. Guided by the approximate value .32 for x,, we chose X, to be .31
and x, to be .33. Calculation shows that y, < 0 and y, > O (the exact values don’t
matter much—only the signs), so that x, must lie between x, and Xx,. The midpoint
value x; is given by 3(x,+ x,) = .32, and we find y3 > 0, so that x, must lie
between x; and x;. The midpoint of these two is x, = 3(x, + x3) = .315, for
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I
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Figure 1.3. Repeated bisection.

which y, > 0. Then x5 = .3125 (with ¥s > 0, so that x, must lie between .31
and .3125), and we can continue indefinitely, halving the size of the interval
containing x, at each step.

Proceeding as far as x;, we find that Xo must lie somewhere in the interval
(.3124, .3125). More generally, if the original interval length is denoted by & (in
our case, 6 = x, — x; = .02), then after n bisections the interval containing the
solution point will have length §/2”". Although we will shortly look at more efficient
methods, the bisection method has some advantages. At each step, only functional
evaluations (and in fact only one new one) are necessary; we do not have to
calculate derivatives. Also, convergence is guaranteed, since we have a sequence
of intervals, of decreasing size, within which Xo must lie.

If y is a more intricate function than that described by Equation (1.4), the
initial interval may contain several zeros of that function. In that event only one
of those zeros will usually be found by the bisection method.

1.3 SECANT METHODS

Let y = f(x), where f(x) is some given function, and let it be required to find
that value of x, say x,, at which y vanishes. A plot of y = f(x) might look something
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like that shown in Figure 1.4. In the secant method one chooses two x-values, x,
and x,, and calculates the corresponding y, and y, values. This gives a pair of
points (x,, y,) and (x,, y,) lying on the curve. The line joining these points (the
secant) is drawn, and its intersection point x; with the x-axis is calculated. Figure
1.4 suggests that if x, and x, are reasonably close to the desired root x,, then x;3
should be an even better approximation to x,. We can now iterate the process,
using the pair (x;, y,), (x3, y3) for the next step, and so on.

In the case of Equation (1.4), with A = .1575 as before, let us take x; = .34,
x, = .33. Then the straight line through (.33, .002971) and (.34, .004809) is given
by

.004809 — .002971
34 - .33

The point x; at which this line cuts the x-axis is that value of x for which y = 0;
we find x; = .3138. One more step (starting with x, and x;) yields x, = .3125.
Further steps change this value only slightly, so that we can take x, as an approx-
imation to x,, correct to about four figures.

The above method is termed the secant method, and the example shows that
it can be very effective. Unfortunately, pathological situations, such as the presence
of extrema (see Fig. 1.5), can arise in which the method may not converge.

A related method, with guaranteed convergence, is the rule of false position—
or regula falsi, as it was termed by seventeenth-century numerical analysts. In this

y = .002971 + < > x —.33).

y=f(x)

Figure 1.4. Secant method.
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Figure 1.5. Possible nonconvergence of secant method.

(x;»y)

Figure 1.6. Rule of false position.

method the two initial x-values, x, and x,, are chosen to lie on opposite sides of
the root x,—that is, y; and y, must have opposite signs. The two points (x,, y,)
and (x,, y,) are again connected by a straight line, which intersects the x-axis at
X;. The next iteration step starts with that one of the two possible pairs—the pair
(x1, y1) and (x5, y3), or the pair (x,, y,) and (x3, y3)—for which the two y-values
have opposite signs. The method now continues in the same way. (See Fig. 1.6).
If we take x; = .31, x, = .33 in our standard example, we find x; = .3123,
xy = 3124, x5 = 3124, . ...
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As indicated in Figure 1.6, the successive iteration points x; will eventually

all lie on the same side of the root x,. Variants of the method, which provide sets
of x,-values approaching x, from both above and below, are possible; see Problem
1.7.

The subroutine FALSE is based on the rule of false position. The input and

output parameters are described in comment statements. (Note that the desired
tolerance, TOL, should not be chosen so small that the number of significant figures
carried by the computer becomes crucial.) A second ‘‘driver’’ program follows the
subroutine. This program uses FALSE to again solve for x in cosh(x) — .1575x
— 1 = 0. The output is found to be

.31244E+00 —.11921E-0.5 2

which checks the previous answer and also the subroutine program itself.

QOOO00O000000N0O0000O0

SUBROUTINE FALSE(N,XL,XR,XC,FC,I,TOL) USES METHOD OF FALSE
POSITION TO ITERATE TOWARDS A ZERO OF A FUNCTION FF(X). THE
ROUTINE WILL ITERATE N TIMES UNLESS FF(X) BECOMES LESS THAN
TOL IN ABSOLUTE VALUE. INPUT VALUES OF X FOR WHICH FF(X) HAS
OPPOSITE SIGNS ARE REQUIRED.

INPUT:
XL,XR = VALUES OF X FOR WHICH FF(X) HAS OPPOSITE SIGNS,
AND BETWEEN WHICH A ZERO OF FF(X) MUST LIE
N = MAXIMUM NUMBER OF ITERATIONS
TOL = TOLERANCE. ROUTINE ITERATES N TIMES, UNLESS
ABSOLUTE VALUE OF FF BECOMES LESS THAN TOL

OUTPUT:

XC = LAST ITERATION POINT, AND BEST APPROXIMATION
TO VALUE OF X SUCH THAT FF(X)=8

VALUE OF FF(XC)

NUMBER OF ITERATIONS ACTUALLY PERFORMED

FC
I

FUNCTION CALLED: FF(X)

SUBROUTINE FALSE({N,XL,XR,XC,FC,I,TOL)

I=0

FL=FF (XL)

FR=FF (XR)

I=I+1

XC=(XL*FR-~XR*FL)/ (FR-FL)

FC=FF (XC)

IF (ABS(FC) .LE.TOL.OR.1.GE.N) RETURN
FOR NEXT ITERATION, CHOOSE TWO POINTS BRACKETING ZERO OF FF

IF(FL*FC.LT.0) THEN

XR=XC

FR=FC

ELSE

XL=XC

FL=FC

END IF

GO TO 3

END
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THE FOLLOWING PROGRAM USES <FALSE> TO APPROXIMATE A ZERO
OF THE FUNCTION COSH(X)~-.1575*X~1

[eNeXe]

PROGRAM TEST

N=5

XL=.31

XR=.33

TOL=1.E-5

CALL FALSE(N,XL,XR,XC,FC,I,TOL)

WRITE(*,100) XC,FC,I
188 FORMAT(2E12.5,14)

END

FUNCTION FF(X)

FF=COSH(X)~-.1575*X-1,

END

1.4 NEWTON’S METHOD

In the secant method of Figure 1.4, a line was drawn through two points (x,,
y1) and (x,, y,) of a curve y = f(x), and the intersection of this line with the x-
axis was determined. If the point x, is made to approach x,, then in the limit the
secant becomes the tangent to the curve at the point (x,, y,), and this leads to
Newton’s method (sometimes called the Newton-Raphson method).

We use a prime to denote a derivative: so if y = f(x), then dyldx = f'(x).
Then the slope of the tangent line at x; is £'(x;), and the equation of this line is

y =fx) + i) — xy) .
Let x, denote the intersection point of this line with the x-axis (see Fig. 1.7). Then

_ fx)
[ ’

X = x (1.5)

yh

t

//x3 /x2

y=f(x)

N - — - = -

Figure 1.7. Newton’s method.
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The process can now be repeated, with

_ _ fxa)

BTR f'x) ’

and so on. In general,

_ S&a)
flx)
For the previous example, with f(x) = cosh(x) — .1575x — 1, Eq. (1.6) gives

cosh x; — .1575x; ~ 1
sinh x; — .1575

Starting at x; = .30, we obtain the sequence x, = .31300, x; = .31245, and at
this point the sequence has essentially converged.

It is easy to derive Equation (1.6) analytically by considering the change in
f(x) resulting from a small change in x; also, this approach will carry over to the
several-variable case of Chapter 3. Suppose x; has been determined, and let x be
any point near x;. From the definition of a derivative, we know that if we define
€;(x) by

(1.6)

Xiv1 = X

Xiv1 = X —

fG&x) = f&x)

X — X;

6(x) = f'(x) ~ .7

then ¢;(x) = 0 as x — x;. This equation may be written

& = fOx) =f'x) - (x —x) — ) - (x —x;) . (1.8
Since ¢;(x) = 0 as x — x;, it follows that a first approximation to f(x) — f(x;), if
x 1s close to x;, is given by the term f'(x;) - (x — x;). Within this approximation,

we choose x, denoted now by x;,,, so as to make f(x) vanish; Equation (1.8)
becomes

0= fx) =f'&x) - vy —x)
and this leads again to Equation (1.6).
Newton’s method converges very rapidly, once the iteration points are close
enough to the root. To show this, we use Taylor’s theorem, the derivation of which

is sketched in Appendix A. Suppose x, is a root of f(x) = 0, and suppose the ith

iteration point, x;, is close enough to x, that the higher-order terms in Taylor’s
formula

fG&) = flxo) + f'(xo) © (i — x0) + 1 f"(x) * (; — xo)2 + higher-order terms
1.9)
are negligible. Then, since f(x;) = 0, Equation (1.6) becomes
f'xo) = (; — x0) + 1 f"(xo) - (x; = Xp)*
f'&xo) + f(x0) * (i — Xo) ’

Xiv1 E X —




