A Second Conference on

Software Development Tools,
Techniques, and Alternatives

j;‘ aw%o C -5 sw
) (so%wﬂ)i e

PROCEEDINGS

0-89791-173-3

CATALOG NO. 85CH2231-9
COMPUTER SOCIETY ORDER NO. 652
ARY OF CONGRESS NO. 85-62329

Association for Computing Machinery

@ THE INSTITUTE OF ELECTRICAL
AND ELECTRONICS ENGINEERS, INC

@) 1eeE COMPUTER SOCIETY

IEEE

December 2-5, 1985
San Francisco, California

Co-Sponsored by:

IEEE COMPUTER SOCIETY

Association for Computing Machinery

COMPUTER
SOCIETY ¢y
PREss P,

[a® R
J

A Second Conference on
software Development Tools,
Techniques, and Alternatives

December 2-5, 1985
San Francisco, California
Co-Sponsored by:

@ IEEE COMPUTER SOCIETY

@ Association for Computing Machinery

PROCEEDINGS

ISBN 0-89791-173-3
IEEE CATALOG NO. 85CH2231-9
IEEE COMPUTER SOCIETY ORDER NO. 652
LIBRARY OF CONGRESS NO. 85-62329
o

' Association for Computing Machinery

@ IEEE COMPUTER SOCIETY @ THE INSTITUTE OF ELECTRICAL COMPUTER

AND ELECTRONICS ENGINEERS, INC SOCIETY
IEEE PRESS

ABOUT THIS CONFERENCE

In July of 1983 near Washington, D.C.,the Computer Soclety ran a new form of
conference - SOFTFAIR - which combined the traditlonal paper presentation sesslons
wlth Indepth tools demonstratlons. The goal was to present to the attendees detalled
technlcal knowledge about selected software tools that was not generally avallable at
elther the standard technlcal conferences or the various trade shows. The conference
was a blg success and the underlylng model for the conference has now become some-
what standard for technlcal conferences.

It 1s now two and a half years later, and SOFTFAIR II has been organized for
the San Franclisco arca. We belteve that this conference both continues the standards
set forth In SOFTFAIR I and also shows the advancement that has taken place over
the Intervening tlme. We hope that you find the conference and assoclated tutorlals of
interest, and we hope that you find these proceedings of value In the years ahead.

Putting together a conference llke thls requires the help of many individuals. I
would like to thank the following people for their help In settlng up the technlcal pro-
gram:

Program Commlittee
Bill Agrest], Computer Sclences Corporation
Bill Ball, Intermetrlcs, Inc.
Ray Houghton, Duke Unlverslty
Frank McGarry, NASA Goddard Space Fiight Center
Tony Wasserman, Unlversity of Californla - San Franclsco
Mark Welser, Unlversity of Maryland

Tools Demonstration Coordinator
Bill Ball, Intermetrices, Inc.

Technlcal Program Coordinator
IFFrances (Andy) Kingery, Unlversity of Maryland

I would Ilke to thank all of them, as well as all of the speakers, panelists and ses-
slon chalrs for thelr contributlons.

Marv Zelkowltz
Conference Chalrman

iii

About This CONferenCe......cooceeivescsccccsssscsossssanses ceesenne P B 1

Session 1A—Large Systems Environments
Session Chairman: Mike Evangelist, MCC

Environment Modeling and Activity Management in Genesis................... 2
C.V. Ramamoorthy, V. Garg, and R. Aggarwal

An Environment for the Development and Maintenance

of Large Software SystemS............. Ceeeteseasesenesssesesacessannennn .o
K. Narayanaswamy and W. Scacchi

Generating Flexible Methodology-Specific System Development

Support Environments.......... ceersone ceeens ceesessanens cesassane vesesaans 24
E. Chikofsky and D. Teichroew

11

Session 1B—Structural Testing
Session Chairman: John D. Gannon, University of Maryland

A Tool for Data Flow Oriented Program Testing.............. tesececansneaas 34
B. Korel and J. Laski
A Computer System for Generating Test Data Using

the Domain Strategy.......coceve.. cerecaens ceassecennen cecenons cesesenes .. 38
L.J. White and P.N. Sahay
A Data Flow Testing Tool....... tesececsasns Gereevesessseesronesanrsaansons 46

P.G. Frankl and E.J. Weyuker

Session 2A-—Knowledge Engineering Applications

Use of Grammar Templates for Software Engineering EnvironmentS............ 56
W.L. McKnight and J. Ramanathan

A Knowledge-Based Design Aid for Software SYyStemS........ceeeeeveeeonesncss 67
M.T. Harandi and M.D. Lubars

AI Based General Purpose Cross ASSemMbler.........eeeeeeessceeecocennonnn .o 15

Y. Takefuji

Session 2B—Panel: PC-Based Tools
Session Chairman: Ron Weissman, University of Maryland

Session 3—ADA Tools
Session Chairman: Larry Druffel, Rational

Session 4A—Application Generators

GEM: A Generator of Environments for Metaprogramming.............e.oc..... 86
A.V. Goldberg and K.J. Lieberherr
ES/AG: System Generation Environment for Intelligent

APPlication SOftWaLe. . .uutiiiiiinnn it ieiiiieneerennannnneneeeeennnnns 96
R.N. Cronk and D.V. Zelinski
GIBBSGEN: Code Generation for GIBBS........ C e e eretntatee st e seeecrntennnnnse 101

D. Bergmark

Session 4B—Functional Testing
Session Chairman: Richard G. Hamlet, Oregon Graduate Center

Reproducible Testing of Concurrent Ada ProgramsS........ceeeeeececcencecas 114
K-C. Tai

AutoParts—A Tool to Aid in Equivalence Partition Testing................ 122
D.M. Solis

A Test Oracle Based on Formal SpecificationS........ceeeeeveveeecoenensns 126

J.D. Day and J.D. Gannon

Session SA—Design Concepts
Session Chairman: Roy Campbell, University of Illinois, Urbana—Champaign

Applying Database Techniques to the Management of Program

Module Descriptions........... St e ceceaaceessasacaatrtaoasoteceannanenenn 132
R.W. Marti

X: A Tool for Prototyping through EXamplesS..........eeeeeeeeeceeoneennens 141
B. Friman

A Software Tool and a Schematic Notation That Improve the Use

Of Programming LaNgUAaGES.euenenuseeeereeenenennneeeeeeennnnnnnnnns 149

P.N. Robillard
Session 5B—Panel: Future for Tools
Session 6A—Code Development

Session Chairman: William Bail, Intermetrics, Inc.

INCROMINT--An INCRemental Optimizer for Machine

INdependent TransSformations......c.eueeveeeeernnceonneeneeennnnnss eeennas 162
L.L. Pollock and M.L. Soffa

Fred: A Program Development Tool......... Ceeneeceanans seeecssestranennas 172
J.J. Shilling

Visible PasCal PrOgraMMing........eeeeeseeeseseeeennnnneeeeeesenennnnnnn.. 181

S-C. Chan and Y. Chu

Session 6B—Formal Analysis
Session Chairman: Thomas Ostrand, Siemans

Tools for Efficient Analysis of Concurrent Software Systems.............. 192
R.R. Razouk and D.S. Hirschberg

Tree-Oriented Interactive Processing with an Application

£0 TheOremPrOViNg. .t ie sttt ettt teneeenanenneenneeaneennesenneennmennnn, 199
D. Hammerslag, S.N. Kamin, and R.H. Campbell
Formal Specification of Syntax Directed Editor........ cesennes ceessanas ..207

E. Hvannberg and M.S. Krishnamoorthy

Session 7—Tools in Use

Current State of the SARA/IDEAS Design Environment....................... 218
E. Krell and E. Lor

vi

Session 8—Environmental Issues

Integrating Software Development Estimation, Planning, Scheduling,

and Tracking: The PLANMACS SysSteM.......cceveeceoceccorcesconcscsncsans .232
H.A. Rubin, D.L. von Kleeck, and D. Bartz
The Library Tester....cceeeeeeeeseeccccccncossosseses ceetssacenns ceestesas 245

.M. Leach, J.E. Satko, and P.J. Gagne

Supporting Parallel Development within a Software

Engineering Environment.....cceeeeeececersescosrsscsscscsooscaccas ceeesss2Bl
R.C. Houghton, Jr.

Author Index........... cteceescscnane 1Y

vii

Session 1A—Large Systems Environments

Session Chairman

Mike Evangelist
MCC

Environment Modeling and Activity Management in Genesls

C.V.Ramamoorthy
Vijay Garg
Kajeev Aggarwal

University of California
Berkeley, CA 94720

ABSTRACT

Genesis is a software engineering based
programming environment. It provides integrated
and intelligent support for the software
development during all phases of the software life
cycle. It models the environment using Entity
Relation Attribute Model, extended with rules.
Based on this model, Genesis supports traceability,
layering, reusability and other useful software
engineering concepts. Genesis uses a knowledge
base for expert resources and activities
management. Activity Manager, a rule based
system, keeps a watch over developers' activities
and warns him of possible inconsistencies besides
guiding him through the process of software
development.

1. Introduction

The software crisis has made researchers aware of the
need for a good programming environment. Genesis, a
software engineering based programming environment,
provides integrated and intelligent support for software
development during the entire life cycle. It provides support
for requirements, design, coding, testing and maintenance.
Our focus is on requirements, design, testing and maintenance
rather than coding. Studies have shown that only 10% of the
software development time is spent on coding [BOE 81].
Gandalf[HAB 82], Cornell program Synthesizer{TeRe 81],
Interlisp[TeMa 81), Smalltalk[GOL 84)], Cedar[TEl 84} already
provide good support for the development phase. Maintenance
is not as well studied. The existing systems for maintenance
such as Source Code Control System(SCCS)ROC 75, Code
Control System(CCS)[BAU 78] and Revision Control
System(RCS)[TIC 82] provide just version control. Design

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 ACM 0-89791-173-3/85/0012/0002$00.75

And Configuration Management system(DACOM)[HAW 83] is
more of configuration manager. EPOS|LAU 83] does not
support software libraries, metrics or rules. SDMS[SHI 82] is
interesting because it is the first configuration management
system that supports software evolution using a hierarchical
change control structure. None of the above systems, provide
integrated support especially with requirements. They do not
have any notion of rules and therefore they are more rigid in
their structure.

Most environments do not provide a uniform model to
the user. However, there are few recent attempts in this
direction. Gandalf provides a syntactical tree model
uniformly. Smalltalk provides an object oriented environment.
ROSI[KOR 85] advocates a relation model as the operating
system interface. Recently SAGA[KIR 85] has proposed the
use of the entity-relationship like model. Genesis has
extended the entity-relationship-attribute model with a set of
rules to provide a framework of the environment. This way,
the environment has the knowledge of software resources and
the development process. This is in contrast to present
programming environments that provide hierarchical file
system as the framework to store and retrieve resources. Also,
they have very little information about the relationship
between the resources.

Genesis is aimed at helping in programming-in-the-large.
It abstracts out concepts of resources and activities, and
provides automatic management of these. Resource
Management in Genesis supports reusability, traceability,
family concept, layering and complexity metrics [RAM 85a).
In this paper, we focus on the activity management in
software projects. Activity Management, not to be confused
with configuration management, deals with active parts of the
project. A project is just a sequence of activities which are
defined as, invocations of software tools to manipulate
software resources. The aim of the activity manager is to
keep a check over this sequence by a rules based protection
mechanism, to decrease the length of this sequence by
automation of many activities, to warn about potentially
inconsistent activities and to guide the developers through
this sequence.

Current systems do mot put proper emphasis on the
integration of requirements with later phases of software
development. Genesis attempts to do so by providing
traceability between requirements and other software
resources. As a part of Genesis, we have transported
Requirements Statement Language/ Requirements
Engineering and Validation System RSL/REVS[BEL 77] from
VAX VMS to UNIXt [RIT 74, KER 81], 4.2 BSD with further
enhancements in modularity and understandability[CHEe 85).

VMS is a trademark of Digital Equipment Corporation
t UNIX is a trademark of Bell Laboratories.

The rest of the paper is organized as follows. Section 2
describes the model that is presented to the user. Section 3
explains the advantages of the model _and Software
Engineering concepts supported. Section 4 dlscussgs Gene§ls
briefly. Section 5 focuses on Activity Management in Genesis.
Section 6 discusses the design of Activity Manager. Section 7
summarizes the status of the project. This is followed by
conclusions and appendices.

2. Formal Model

We think that the major weakness of current
programming systems is the ineflective hierarchical model of
resources, and the lack of emphasis on relations among
resources. For example, in most conventional programming
environments, users deals with files which act as resources.
These files are independent of each other and are organized in
a tree form. This model, we contend, is too weak to support
good software engineering principles, because files themselves
are discrete entities having no relations at all among them.
Furthermore, files or resources have few built-in attributes.
Therefore, Conventional Programming Environments are
ignorant of contents of files and treat them alike. Thus,
retrieving a resource is primitive, For example, UNIX has ls
and file commands to retrieve resources. These primitive
commands result in displaying too much redundant data, thus
hampering productivity. The software designer has to keep
all the bookkeeping himself, and has to make artificial
directories to keep resources organized. The designer has to
deal with relocation of resources, maintaining backups, and
removing resources manually. The problem becomes more
acute when he has to deal with a big project using hundreds
of files spreading in a maze of directories. Decomposition of a
program into smaller modules also result into larger number
of files discouraging the user to break his program. Unix
alleviates the problem by providing many options with (s
command but the problem is essentially unsolved. The first
task we took, was to provide a more powerful model and
therefore furnish more sophisticated traceability and
knowledge about resources.

In search of a more powerful model, we abstracted out
the concept -of objects, links between them and their
attributes. With this abstraction, Entities Relations
Attribute(ERA) model[CHE 83a] was the closest to our
requirements. ERA models information as consisting of
entities. Entities are similar to nouns in English. They have
attributes that correspond to adjectives in English. They also
have relations that correspond to verbs in English. Out of
many ERA models proposed[CHE 83b], we are using the
model with following restrictions. Only entities have
attributes, that is, relations do not have any attribute. We
allow only binary relationships between entities, although
relationships could be many-to-many. They are directional
and relations in one direction are referred as primary while in
opposite directions as complementary. As shown by

Chen|CHE 83b], these restrictions do not decrease the
expressive power of the model. They make the retrieval
efficient and the user model more simple and elegant. This
wodel lets us define relationships between two entities or
attributes of some particular entity. However, this model still
suffers from a major weakness. It cannot express rules that
govern these entities, or actions required in presence of some
conditions. To remove this weakness, we have extended the
model to incorporate rules in it. A rule is a composition of a
condition and an executable entity. Whenever the condition
is satisfied, the entity is invoked. The condition is expressed
using first order predicate logic involving entities, attributes
and relations. The model is illustrated in figure 1.

The figure shows two software resources, lex and parse,
related by a relation Refers. These resources have attributes
like time, hierarchy, classification and so on. The rule
states that if any software resource refers amother software
resource then it should be at a bigher layer. Proc_layer is a
relation (not shown in figure) which links this procedure to
the layer, of which it is a part. The syntax of the rule used is
explained later.

Entity

lex. sonsce
Attribute VR
(class]
Relation /v
Rule ’(

ware ’_“‘/\ e
Resource ~| Resource

\
5

931 6/15 028 6/15

procedure rocedure

b-]
g

| (Refers(?a) = ?b) and
{proc_layer(?a).num < proc_layer{?b).num)

Layering_Inconsistent |

fig 1 : Our Model of the Environment

3. Model - and Software Engineering Concepts
supported

With Entity Relations Attribute Rules (ERAR) as the
basic model many of the recognized software engineering
features are supported. The importance of the software life
cycle is emphasized and an attempt is made to reduce the
most time consuming phases. Various entities, relations and
attributes are described next. The subsequent discussion also
points out important underlying concepts supported.

3.1. Entities

There are three primary entitiy types in an environment.
Besides these, developers can add their own entities types to
make system more suitable to their project.

3.1.1. Software Resources: These entities correspond to
various resources that are used in a software development
project. In Conventional Programming Environments all these
resources are treated as files and are managed by
programmers themselves. Examples of such entities are:
requirements specification for a project, design of a layer,
design of a module, source of a module, test cases for a
module and documentation of a module. Also the user is free
to define his own resource type. He can add relations and
attributes to those resources to get traceability of the form he
desires.

3.1.2. Software Tools: These entities correspond to tools
which manipulate software resources. They have certain
attributes and relations with other entities. Examples of such

tools are editors, compilers and profile generator. These
entities will be input to system using Entity Specification
Language. As more tools are developed they are added to the
database making the system evolvable.

3.1.3. Software Personnel: These entities correspond to
the personnel who use Software Tools to manipulate
Software Resources. Modeling of personnel lets Genesis
distinguish between their responsibilities and hence enforce
protection on other entities.

3.2. Attributes

An attribute describes functional and non-functional
aspects of a particular software entity. It consists of two parts
- attribute name and attribute value. Most attributes are
managed by the system itself. The user can access software
resources using queries qualified with these attributes. They
are as follows.

3.2.1. Classification: This attribute is valid only for
software resources. A Software resource abstracts various
kinds of texts used in software life-cycle. The value of this
field could be requirements, design, source, lest_case,
document, library or object code. This way each entity gets a
label according to its function. Higher layers and rules use
this attribute to provide semantic help to developers.

3.2,2. Hierarchy: This attribute classifies each entity into
one of the hierarchy as shown in figure 2. Our hierarchy
cobsists of - family, member, layer, module and procedures.
With this attribute, we support software family concept and
layering.

(\) Family

) \?:) Member

™y Layer
Ny

~
f‘}/)\C Module
AN
e
Cf \C\) Procedure

fig 2: Hierarchy classification of resources

Two systems are comsidered part of the same Software
Family[PAR 78] if it is easier to understand them by looking
at their similarities first and then at their differences rather
than individually. Software Family concept is important
because it captures the notion of evolution of a system.
Various releases of a system can be considered part of a same
family. Layering has been accepted as a standard software
development technique[DIJ 68, PAR 79]. With the layered
structure the development simplifies because of information
biding. It also results in greater modifiability of the system,
because a layer can be replaced by another without worrying
about other Jayers. This way new members can be generated
for a family.

3.2.3, Other Attributes: Status describes whether the
entity has been completed or not. P‘rotectwn_ lets higher
layers of Genesis provide protection. Time_Created,
Time_Modified and Time_accessed let above layer check
consistency between data dependent ﬁles.' For example,
Make[FEL 78] can use such attribute. Vcrawn.Numbcr. can
be used to provide version control of various entities.
Language and Preprocessor can be used to generate makefile
and scriptfile. Locked can be used for providing resource level
synchronization.

Complexity can be used for providing metrics guided
design methodology[RAM 84, RAM 85b]. Most of the work in
complexity metrics is done at the source levelTSE 83].
Genesis intends to apply metrics at requirements and design
level. Further, these metrics can be used to guide the process
of designing, a methodology termed Metric Guided Design
Methodology in Genesis.

Functional_Keywords are used to retrieve resources
from software libraries. Higher layer of Genesis can use this
field to increase reusability which itself has been recognized as
the most effective method of reducing software life-cycle
cost[BIT 85]. Thus, usage of functional_keywords and the
abstraction of resources also encourage reusability of other
entities besides source code. For example, often when the
source code is too machine dependent, requirements and
design can be reused. Non-Functional attributes are provided
to help retrieval of resources from libraries. Example of these
attributes are - Reliavility, Memory_Requirements,
Performance. The current set of attributes provided in
Genesis are given in Appendix A.

3.3. Relations

Only binary relations are allowed in Genesis. Relation is
the primary mechanism to provide traceability. Traceability
among requirements, design and source code is important for
both software managers and programmers. It provides means
to verify that all requirements are provided and tested. It also
helps in software evolution as impact of a mods fication
request[ROW 83] can be traced down to modules affected.

3.3.1. < Classification>_to_ < Classification >
Relation: This set of relations is used for tracing from one
class of entities 15 another. For example, a requirement entity
is related to one or more design entities by this relation, With
this specification, all designs that correspond to a specific set
of requirements can be traced.

3.3.2. <Hierarchy>_to_ <Hierarchy> Relation: This
set of relations lets Genesis trace from a higher level of
hierarchy to a lower level. For example, all modules
corresponding to a layer can be traced from the layer
specification.

3.3.3. Other Relations: Refers is used for tracing
resources depending on their reference. Contains is used to
implement libraries. Inputs, Outputs and Affects provide
other forms of traceability similarly. Author and Owner can
be used to provide access control. A complete list of relations
is given in appendix C.

3.4. Rules

Conventional Programming Environments do not have
enough information about resources or the software
development process. To solve this problem, Genesis has a

knowledge base which lets Genesis show an intelligent
behavior. Rules provide Genesis a framework of detecting
conditions in the knowledge base which require some action.
Genesis uses rules to deduce intelligent conclusions which
relieves the personnel from these tasks. Rufes also support
extendibility and adaptabilisy. Genesis can be adapted to any
particular environment by adding extra rules. The purpose of
these rules are described below:

3.4.1. Methodology Enforcement: The methodology
adopted for a particular project can be enforced using rules.
For example, a rule which states that a requirement resource
should be analyzed before developing design resource, will
warn the programmer of his intentional or unintentional
oversight.

3.4.2. Checking Inconsistency: With multiple
programmers working on hundreds of software entities to
develop different sections of a big program, inconsistencies
arise easily. Using rules Genesis can detect these
inconsistencies and warn the personnel. For example, a rule
which states that if the date_created of entityl is less than
date_modified of entity? that generates the entsty! then
entity! should be generated again, lets us check that entities
being used are up-to-date. Activity Manager uses rules
extensively to provide an expert assistance to the developer.
More examples of such rules are given in the section on
Activity Manager.

3.4.3. Automating the tasks of deletion,
documentation and testing: Many tasks performed by
developers can be automated using rules. For example, a rule
which states that a resource not accessed in the past one year
should be put on backup, can be be used to cleanup resources
automatically. A rule which states that all test cases should
be applied again after a change in a resource, can be used to
apply existing testcases and get differences with the previous
results.

Some other important rules are given in appendix A.
Genesis uses Ingres|STO 78] database to implement this
knowledge base.

4. Description of Genesis

We have focused our attention on programming-in-the-
large, where the number of entities is very large. This lets in
problems of resources and activity management, which is
bandled by Resource Manager and Activity Manager

respectively.
" Activity Manager
/!

S
E / Unix
S Ingres
\\

_J// / /

fig 3: Components of Genesis

\\

These and other visible components of Genesis, as given in fig
3 are described next.

4.1. Entity Specification Language System (ESL)

To support Entity Relation Attril?ute Rules model, we
have implemented an Entity Specification Language system
that lets software personnel insert, modify or delete various
entities in the system. Genesis uses a database to store all this

information. An example of interaction with ESL is as

follows.

Entity John Smith: User .
Type: programmer /* an attribute */

Responsible_for: IO_Interface, Error_Reporter /* related to

End

4.2. Resource Extractor (REX)

Another subsystem of Genesis, Resource Extractor, l.ets
programmers extract resources with attribute or relation
qualification. Using this system, the programmer can trace
through various resources. To illustrate the usefulness of the
model, we present some example queries of REX. The syntax
of a query is as follows:

/* Retrieve all thos» members from set-name?
which satisfy attribate and relation qualifications and put
them in set-namel. */

SET <set-namel> = <sct-name2> { <attribute-qualification>

| <retation-qualification>)

/* List 2ll elemeats from set-nasie which

satisfy attribute and relation quslifications. */

LIST <set-name>{ <attribute-qualification>
| < relation-qualification> }

/* List all the source code affected by
a change in file: Getcommand.c */
List Software_Resource affected by Getcommand and
(classification = source_ code)

[* Give me all requirements having high performance
but the corresponding sources having low performances.* /
/¥ step 1 - get all requirements with high performance */
Set High_Req = Soitware_ Resources

Classification = Requirements

Performance = High.

/* step 2 - get corresponding Source_code with low performance
List Software_Resource with

Classification = Source_Code

Relation req_to_source set High_Regq

Performance = Low.

/* Give me all testcases relevant for the source check_for_err */
List Software_Resource with

Classification = Test_Cases

Relation source_to_test check_for_err.

Of course, the user is not expected to type as much as shown
above. Macros and other syntactic conveniences can be
provided by above layers. Right now these are missing from
the system.

Y/

4.3. Resource Manager .

Resource manager is respomsible for managing above
entities. It supports software fan?ily. concept[PARJG]. A
system is considered as evolving if it kee;_)s changing over
time. Resource manager supports this notion gf .cvolutum.
The concept of generic and specific information is introduced
to deal with common and specific properties of. any
subsystem. Reusability is supported by pyowdmg libraries at
various levels - module library, layer library and member
library. These fibraries contain not only code, but als,.o
requirements, design and test cases. Thus the programmer is
encouraged to use requirements and test cases, when the code
cannot be used because of system dependence. These
resources could be retrieved using keywords. Resource
Mapager also provides version control and. let user trace
resources using development history. Traceability is provided
between members, layers and modules. The prototype of such
a system is ready and is in the process ot: bexqg applied to
existing software to gain more experience in this field. The
details are in [RAM 85a].

Some future work planned in this area includes metric
guided design methodology. Currently most complexity
metrics are useful only at the testing and maintenance phase.
We intend to apply metrics at the requirements and design
level. With these metrics, the resource manager could act as
an expert peer suggesting appropriate design out of possible
ones, estimating cost and schedule of the project and the
impact of a modification request on the system.

4.4. Activity Manager

The goal of Activity Manager is two-fold, to keep a
watch over personne! activities and to relieve the developers
from menial activities. Thus it acts as programmer's assistant
on one hand and methodology enforcer on another. Activity
Manager bhas a database of all software resources, taols that
manipulate these software fesources, and the project
personpel. It also has a knowledge base consisting of various
rules about all these kinds of entitjes. It uses this knowledge
base to generate warnings whenever the developer shows some
anomalous behavior. It co-ordinates various developers and
checks for two persons trying to modify same entity. It warns
the software designer, if it detects any inconsistencies between
documentation and implementation, requirements and design,
implementation and requirements, implementation and test
cases. A few examples of inconsistencies are - programmer
thinking that he is debugging the latest version of a source
code, programmer assuming a behavior about certain module
which already has been changed by another software
enginneer, the programmer thinking that bug is located in one
particular module whereas it could be located in another
untested module. Our emphasis was to formulate the rules
that programmers follow in their minds. This will leave
programmers to do more creative work.

Activity manager generates an inconsistency file which
consists of these inconsistencies besides warning user at
appropriate times. It also keeps a log of the developer
activities and generates loghile and the goalfile. Goalfile keeps
track of things to be done by the developer so that the
programmer can find out procedures that remain to be
designed, tested or documented. It also generates makefiles
and scriptfiles to relieve programmer from making them
himself.

Activity manager uses rules to enforce protection of
resources. Examples of such rules could be, only manager is
allowed to change requirements, a programmer cannot change
a module if the module has been given status of a tested

module, users of the system are not allowed to change any
design, document or implementation. The' <:'ouphng 9!
Activity Manager and other entities in Genesis is shown in

figure 4.

Other
ORI

N

Kpowledge

' ode

\

fig 4: Coupling of AM with other components

5. Description of Activity Manager Activity Managgr
keeps a watch on the user's activities. In particular, it
remembers all commands given by the user. It abstracts out
information from these commands to do many bookkeeping
jobs for the programmer. AM also has knowledge about the
process of software development. It is also aware of the tools
used by the programmer. With the help of above, AM assists
developers in the following manner.

Commands
by the user

AM

Methodology
tools used
resources
consistency
rules

Coordia.

Inconsistency)
Deletion.

Log Seript
Gesl Makefle Protect.

fig 5: Inputs and Outputs of Activity Manager

5.1. Inconsistency_File

This is the most important and diﬂicu!t tas}(of AM.
The programmer generates many ipconsngtencngs while
carrying out activities. Examples of such inconsistencies are

- change in requirements, making implementation
inconsistent.
change in some module, making documentation
inconsistent.
- moving a module from one layer to another making
layering inconsistent.
Thus AM monitors the user's activities and keep a
watch over all the potential inconsistencies generated by the

user. A typical Inconsistency file would look like as follows:

1)Inconsistency —l
Change in Requirements
Entity : Update_ Transaction
Date : May 21,85
Author : Robert Williams
Author’s comment : The user wanted undo facility
2)Inconsistency
Change in position of module within layers
Module : Getindex
Desctiption : Moved from layer Lex to Parse.
Used by the lower layer module in Lex :
check_Reserve
Date : May 21,85
Author : John Smith
Author's comment : null.

5.2. Goal_File

Usually a programmer has to design, implement, debug

and test many modules/procedures. Further, during the
implementation of a procedure in a topdown approach, the
programmer ~ uses many unimplemented procedures.
Currently, all this js kept track of by the programmer
himself. AM alleviates the problem by maintaining a goal file
which stores all goals of the programmer. This file is updated

by AM automatically as the programmer finishes some part of

it or as he assumes existence of some procedures yet to be
written. We also have a notion of current goal of the
programmer. AM can check that the current goal of a
programmer does not conflict with the current goal of another
programmer at any given time. That is like reserve of the
Gandalf project. A typical goal file would look as follows:

Readline - design
- source in C
- test
- document
Chkerr - test
- document

While implementing the procedure Readline, if the
programmer uses functions, say getchar or skipblanks, then
these too will be added to the list. Activity Manager has, at
all times, a list of goals and can remind the programmer of
his next goal when he finishes the current goal.

6.3. Log_file

This file is also geperated automatically by AM. The aim
of the log file is to keep a record of activities performed by
software personnel such as, number of man hours spent on
the project and breakup of these man hours into coding,
testing, documentation. It can be used to evaluate the

validity of metrics. For example, reliability models can be
evaluated by extracting error history, mean time to fix an
error and introduction of errors. A typical Log._ file would look

as follows:

Project Genesis

Programmer Robert Williams started at 9:00 May 15,85
Modules changed

Get_history : EditorCalls = 6 ; Time == 1:05
Get_command : EditorCalls = 2 ; Time = 0:32
Symbol_table : EditorCalls = 5 ; Time = 2:03
Modules Executed

Get_history : Time == 0:30 ; Test_ Coverage = 80%
Symbol_table : Time = 1:05 ; Test_ Coverage = 60%
Modules Documented

Get_history : Time == 0:35 ;

Finished working on the project at 18:32 May 15,85

5.4. Makefile

Currently, makefiles are developed by the programmer
manually. In most cases, the data dependency is known
through Genesis database. An example of data dependency
that could be detected automatically is about snclude files. It
is possible to go through these files and generate a dataflow
graph which can generate makefle using knowledge about
various tools [WAL 84].

5.5. Scriptfile

Activity Manager stores the history of commands issued
by the wuser. This is mainly used to generate default
command, default arguments and the script file. This relieves
the programmer from making a script file himself when the
script file can be deduced from the past sequence of
commmands. This is often the case when programmer gives
the same series of commands many times, like the
conventional edit-compile-load-execute cycle.

5.8. Protection

The protection scheme of the operating system is too
naive to handle the protection required in a big project. For
example, a programmer should be able to access a particular
module only before it is tested. However, if a module is
already tested and integrated into the system, a programmer
should not be able to change the module without the
manager’s permission. Thus, the protection mechanism can
be extended to suit any project protection requirements.

6.7. Co-ordination among multiple programmers

There are two major functions in this category- first,
avoiding read-write and write-write conflict, and second
informing the programmer of a possible difference between
the behavior of some module as he thinks and as it really is.

The difference of the behavior could be because of some
change made by another programmer. This relieves the
programmer the task of sending mail to everybody who may
be using the procedure which has been modified by him. It
also relieves programmers of reading through all the mails
indicating changes in some procedures most of which they will
not be using anyway.

5.8. Warnings about anomalous behavior

In most systems, the user gives commands which are
executed by the system directly. But some of these
commands, if not used in correct sequence, can result in
tnormous waste of programmer’s time. For example,

sometimes the user modifies his source file, forgets to compile
it and executes the old version. He may end up spending a lot
of time before realizing his mistake. Undo mechanisms are
helpless in general when the realization of the mistake itself is
costly. AM provides a filter that has knowledge of the
expected behavior. This filter generates warnings when the
programmer deviates from this behavior. The example above
can easily be remedied using this solution.

5.9. Automation of Activities

AM automates many activities. Obsolete information is
deleted by incorporating a rule which puts into backup any
entity not accessed for some period of time. A part of testing
is also automated. Whenever a source module is changed,
test cases can be run automatically and the difference with
previous outputs noted. By storing extra information,
debugging can also be done partially.

8. Design of AM

AM is a rule based system. It uses these rules to enforce
protection and check inconsistencies. The nature of the design
makes addition of extra rules easy. Thus the system is
evolvable. The rules are expressed as logical predicate
consisting of relations and attributes of various entities. The
following notation is introduced to give an example.

Entity.attribute result is an attribute
relation(entity) result is a set of entities

Rule :: [Condition, entity]

With this notation, example of some rules would be

(1) /* only managers are allowed to change
requirements */ [(Aflected(?tool).type =
requirements) and ((Tuser).type != manager),
Invoke_Modification_Request]

{2) /* if 2 module has already been certified as
tested, it can not be changed by a programmer
*/ [(Affected(?tool).status == tested) and (
(Tuser).type 1= manager)
Invoke_Modification_Request |

7. Status of Genesis and Future Directions

Genesis is an ongoing project for two years,
Requirements system (RSL/REVS) version of unix consists of
20,000 lines of "C” code. ESL and REX reuse most of the
software of RSL/REVS. ESE (Resource Manager) runs on
Unix 4.2 and consists of about 5,000 lines of "C” code [USU
85]. AM is in the last stages of design [GAR 85]. Meta-rules,
which are rules about rules, are being looked into. Ways of
classifying rules for performance reasons is another aspect
which is being explored. Rules conflict detection and
resolution is being worked out. ESL Extension System
(ESLXS) is currently being developed which will let user add
his own entities, attributes and relations besides those which
are predefined. Reverse Engineering (REVENG), in Genesis,
refers to algorithms and mechanisms of going backwards from
program. The examples are Information Abstraction through
Program Slices [WE! 81] and relational view of programs|LIN
84]. This and automatic layering are in research stage.
Metrics Guided Methodology (MGM) is considering ways of
incorporating metrics in programming environments. The
philosophy advocates metrics to serve as guide during the
design process. This aspect of Genesis is also in research
stage. Large programs are often developed on multiple
machines. Providing programmers the facility of Genesis over
multiple machines is a nontrivial task. Our long term goal
consists of making Genesis cross machine boundaries. The
status can be summarized as follows.

Status of Genesis

Comp Past Present Future
RSL/REVS | lmpl i Graphics Interface DynamicSimulstion
ESL Prototype E: jon with rules
REX Prototype Rules Analysis
ESE(RM) Prototype Experience, Integration
AM Design Prototype Temporal, Distributed
MGM Research Design Prototype
REVENG None Research Prototype
ESLXS None Prototype

8. Conclusions

_ Genesis is a software engineering based programming
environment. It provides integrated and intelligent support
for software development during all phases of the software life
cycle. It models the environment using Entity Relation
Attribute Model, extended with rules. This model supports
trageability, layering, reusability and other useful software
engineering concepts. We have integrated requirements with
rest of the system. Various forms of traceability between
resources are provided. Our system supports reusability
thro.ugh libraries and configuration management through
version control. Genesis uses a knowledge base for expert
resources and activity management. Activity Manager keeps
a watch over developers’ activities and warns him of possible
inconsistencies besides guiding him through the process of
software development. AM generates logfile, goalfile,
scriptfile, makefile, and inconsistency-file. It also co-ordinates
between multiple programmers and generates warnings for
unexpected bebavior. It also enforces methodology and the
protection on developers. With a knowledge base, it has a
wide flexibility of extension through incorporation of
additional rules. In short, our system attempts to combine
principles of software engineering and artificial intelligence to
provide a productive environment.

9. Acknowledgements

We gratefully acknowledge C. Davis, W. M. Evangelist,
C. Graff, J. Musa, D. Opferman and R. H. Yacobellis for
numerous helpful discussions and comments. We also want to
thank our colleagues Y.F. Chen, A. Prakash, W.T. Tsai, and
Y. Usuda for helpful suggestions.

10. References

[BAU 78] Bauer, H.A., and Birchall, R.H., Managing
Large Scale Software Development with an
Automated Change Control System,
COMPSAC 1978.

Bell, T.E., Bixler, D.C., and Dyer, M.E., An
Extendible Approach to Computer-Aided
Software Requirements Engineering, JEEE
Trans. on Software Engincering, January
1977.

Bitar, 1., Penedo, M.H., and Stuckle, E.D.,
Lessons Learned In Building the TRW Software
Productivity System, Compcon, Spring 1985 ,

Boehm, B. W. Software Engineering
Economics, Prentice Hall, 1981.

Chee, C.L., A Translator for RSL, Master's
Report, Electrical Engineering and Computer
Science, University of California, Berkeley,
May, 1985.

Chen, P.S., C.L., ER - A Historical Perspective
and Future Directions, The Entity-Relationship
Approach to Software Engincering, Elsevier
Science, 1983.

[BEL 77)

[BIT 85)

[BOE 81]

[CHEe 85

[CHE 83a]

[CHE 83b)

[DIJ e8]
[FEL 78]

[GAR 85]

[GOL 84]

[HAB 82|

[HAW &3]
[KER 81

[KIR 85]

[KOR 8]

[LAU 83

[LIN 84]

[PAR 76]

[PAR 79)

[RAM 84]

[RAM 85a]

[RAM 85b]

Chen, P.S., C.L., A Preliminary Framework for
E-R Models, The Entity-Relational Approach to
Information Modeling and Analysis, North
Holland, 1983.

Dijkstra, E.W., THE Multiprogramming
System, Communications of the ACM, May
1968.

Feldman, S., Make- A program for Maintaining
Computer Programs, UNIX Programmer’s
Manual, BSD4.2.

Garg, V., A Software Engineering Tools in
Genesis, Master’s Report, Electrical
Engineering and Computer Science, University

of California, Berkeley; 1985.

Goldberg, A., Smalltalk-80, The Interactive
Programming Environment, Addison-Wesley
Publishing Company, 1984.

Habermann, A.N. et al., The Sec?nd
Compendium of Gandalf Documentation,
Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, PA, May 1982,

Hawley, P.J., DACOM: A Design and
Configuration Management System, COMPSAC
1983.

Kernighan, B.W. and Mashey, J.R., The UNIX
Programming Environment, IEEE Computer,
April 1981.

Kirslis, P.A., Terwilliger, J.R., and Campbell,
R.H.The SAGA Approach to Large Program
Development in an Integrated Modular
Environment, Proc. of the GTE Software
Engineering Environments for
Programming-in-the-Large Workshop,
harwschport, MA, June, 1985.

Korth, H.F. and Silberschatz, A., A User-
Friendly Operating System Interface Based on
the Relational Data Model, Internal Report,
Department of Computer Science, University of
Texasat Austin, Austin, TX, 1985.

Lauber, R.J. and Lempp, P.R. Integrated
Development and Project Support System,
COMPSAC, 1983.

Linton, M.A., Implementing Relational Views of

Programs, Proc. of the ACM
SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software

Development Environments, May 1984.

Parpas, D.L., On the Design and Development
of Program Families, JEEE Trans. on Software
Engineering, March 1976.

Parnas, D.L., Designing Software for Ease of
Extension and Contraction, IEEE Trans. on
Software Engineering, March 1979.

Ramamoorthy, C.V., Prakash, A., Tsai, W.-T.
and Usuda, Y., Software Engineering: Problems
and Perspectives, Computer, October 1984.

Ramamoorthy, C.V., Prakash, A., Tsai, W.-T.
and Usuda, Y., Genesis: Ap Integrated
Environment for Supporting Development and
Evolution of Software, accepted for publication,
COMPSAC 1985

Ramamcorthy, C.V., Tsai, W.-T, Yamaura T.,
anc; Bhide, A., A Metrics Guided Methodology,
arcepted for publication, COMPSAC, 1985.

[RIT 74)
[ROC 75)
[ROW &3]

[SHI 82)

[STE 81
[STO 76
[TeMa 81]

[TeRe 81]

[TEl 84]

[TIC 82]

[TSE 83]
[TSE 84]

[USU 85)

[WAL 81]

(WEI 81)

Ritchie, D.M., and Thompson, K., ‘The UNIX
Time-Sharing System, Communications of the
ACM, July 1974.

Rochkind, M.J., The Source Code Control

System, IEEE Trans. on Software
Engineering, December 1975.

Rowland, B.R., Welsch, R.J.,, Software
Development System, The Bell System

Technical Journal, January 1983.

Shigo, O. et al., Configuration Control for
Evolutionary Software Products, Proc. of the
6th International Conference on Software
Engineering, September 1982.

Stenning, V., Froggatt, T., Gilbert, R. and
Thomas, E., The Ada Environment: A
Perspective, Computer, June 1981.

Stonebraker, M. et al, The Design and
Implementation of INGRES, ACM Trans. on
Database Systems, September 1976.

Teitelman, W. and Masinter, L., The Interlisp
Programming Environment, Computer, April
1981.

Teitelbaum, T. and Reps, T. The Cornell
Program Synthesizer: A Syntax- Directed
Programming Environment, Communications
of the ACM, September 1981.

Teitelman, W., The Cedar Programming
Environment: A Midterm Report and
Examination Xeroz Corporation, Palo Alto,
CA, June 1984.

Tichy, W.F., Design, Implementation, and
Evaluation of a Revision Control System, Proc.
of the 6th International Conference on
Software Engineering, September 1982.

Special Selection on Software Metrics, /EEE

Trans. on Software Engineering, November
1983.

Special Selection on Software Reusability, IEEE
Trans. on Software Engincering, September
1984.

Usuda, Y., A The Design and Implementation of
Evolution Support Environment, Master’s
Report, Electrical Engineering and Computer
Science, University of California, Berkeley,
May, 1985.

Walden, K., Automatic Generation of Make
Dependencies, Software Practice & Ezperience,
June 1984.

Proc. 5th

M., Program Slicing,
So ftware

Weiser,
Conference on

International

Engineering, 1981.

Appendix A
Some Rules used by AM

Only manager can change requirements.

Only manager can change a resource after the
resource has been classified as tested.

If requirements are changed and design exists then
there is a possible inconsistency between
requirements and design.

if design is changed and corresponding sources
already exist then there is a possible inconsistency
between design and the source code.

if source code is changed after the module has
been certified as implemented then there could be
inconsistency between documentation and the
source code.

if a module is changed by someone else, the
programmer may be unaware of the change.

if a bug is discovered by a programmer, the
developer of the module may be unaware of it and
should be sent a mail.

Users of the system are not allowed to make any
changes to any part of the system.

If a module refers a module which exists in a
higher layer then the layering is inconsistent.

if i want to affect some module which is already
being affected by or used by some other person at
the same time, then there are chances of
inconsistency.

if last time the programmer used some argument
to a command, then he is most probably going to
use same arguments once again.

if he gave some command after a particular
command and if he has given that particular
command once again then most probably he is
going to give that command again

if source code modified, but not compiled and the
old object run then inconsistency

if he is debugging a module which uses some other
module which has not been tested properly then
he could be looking for the bug at the wrong
place.

if he has changed the source code then a bug
could have arisen. This could be checked by
checking previous test cases and comparing
outputs.

if a file has not been touched for last one year,
then it could be put in backup.

if during debugging, if program works correctly on
one test case, and does not work on the modified
version, then we could probably localize the error
in the modules that were recently modified.

10

Appendix B
Examples of Attributes of Software Resources

Attribute Name Description
assification Reqmrements, Ee.;lgn, gource, 65)«&,
Test_Cases, Document, Library
Hier-classification Family, Member, Layer, Module, Procedure.
Status Incomplete, Complete
Description Text
Version No Number
Protection Number
Locked
Time Created Number
Time Modified Number
Time Last Accessed Number
Size
Functional_ Keywords array of index terms
Body_File Text
Preprocessor Lex, Yacc, Equel ete.
Reliability Low Medium High
Reusability Low Medium High
Complexity any metrics
Memory_Requirements Number

E les of R

Appendix C

4

n Software Resources

Relations

<Class>_ to_ <Class>
<Hier>_to, <Hier>
Refers

Author
Inputs
Outputs
Aflects
contains

Description
requirements_design, acugn_g\u'ce Telation

and so on.
family_member
relation etc.
This relation gives dependency between
various entities. Other Software Resources
Personnel

other software entities

other software entities

other software entities

other software entities /* used for libraries * /

relation, layer_module

An Environment for the Development
and Maintenance of Large Software Systems

K. Narayanaswamy and W. Scacchi
Computer Science Dept.
University of Southern California
Los Angeles, CA 90089-0782

Abstract

The maintenance of large software systems is known to
be a costly and complicated endeavor. We describe an
environment for the development and maintenance of
large software systems which offers the potentia.l to.aid in
the specific activities relating to programmn{g-m-the-
large and maintenance-in-the-large. The environment
seeks to improve on existing technology for these
activities in several ways: a) it is based on a flexible but
coherent underlying representation for families .of
software systems, b) it provides the upward-compatibility
mechanism to support incremental alteration of large
systems, and ¢) it seeks to actively support maintenal.nce-
related activities by using the existing system descriptions
and their inter-relationships to aid in interactive
modification of the existing system. Issues relating to the
implementation of the prototype environment and its
ongoing evaluation are discussed. The environment a{ld
the principles which it embodies provide a substanflal
base for tackling many problems bearing on the design
and evolution of large software systems.

1. Introduction

Much of the complexity of the software maintenance
effort stems from a seemingly inherent property of
software systems called continuing change {1]. This
terms refers to the phemomenon that so long as a
software system is in use, it is always undergoing change
on a routine basis. This intrinsic aspect of a software
system has several manifestations symptomatic of a more
fundamental problem.

1.1. Some Symptoms of Continuing Change

The ongoing alteration of software systems leads to a
host of maintenance problems which still remain major
intellectual challenges. Several researchers have examined
particular facets of these problems:

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 ACM 0-89791-173-3/85/0012/001 1$00.75

¢ Designing modular systems using guidelines
such as information hiding [20], Hierarchical
Development Methodology [27), abstract
machines [21], abstract data types [8], etc.
[28].

® Describing the structure of large software
systems in terms of module interfaces and
inter-dependencies as in the work on Module
Interconnection Languages (MILs) 5], [30],
(22], [23].

e Tracking the configuration of system module
designs and source code [2], [32].

e Minimizing the recompilation, retesting, and
reintegration required in incrementally altered
systems (7], [24], [33].

¢ Estimating the possible impact of system
alterations using some metrics-based
approaches [34].

e Controlling the proliferation of multiple
system versions [32], [9].

While one has to bring diverse skills into each of these
areas in order to solve the problems peculiar to that area,
it is suggestive that they are all exacerbated by
continuing change. None of the above problems is critical
for a small software system, or even large systems which
are developed with the knowledge a-priori that they are
never going to evolve. However, given the size of non-
trivial software systems, and the virtual certainty of
maintenance alterations, such conditions are not likely to
arise in production-quality software systems,

1.2. Goals of our Research

While there is no basis to suggest that the solutions to
each of the above problems are exactly the same, it is
important to realize that there is a sufficient basis to
consider them to be related. We believe that the
problems listed in the previous section should be
addressed within the context of a uniform, coherent
representation for evolving systems which provides
the means to analyze exactly how alterations affect a
software system. Such a representation would be able to

