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orelace

This book is intended for use in the first course in thermodynamics taken,
by students in engineering. Naturally, not ail the material presented can be
covered in one semester, and different courses may demand different

, emphases For those programs which require it, the text contains suf-
ficient material for a two-semester- sequence.

Considerable difference of opinion exists as to the subjects to be
covered in a first course in engineering thermodynamics. Some instruc-
tors prefer a strictly classical, or macroscopic, approach, while. others
.advocate a strong input of microscopic thermodynamics. Both schools
woulc"agree that the course content should be matched to overall pro-
gram objectives, and that a text for such a first course must address itself
to both the macro and micro applications. The student interested in solid-
«state electronics will find the sections on applications of 'statistical ther-
modynamics useful in. later work but, hopefuily, will also recognize the
importance of classical thermodynamics in developing a proper founda-
tion for the microscopic models of substances. The student interested in
power cycles -and energy conversion will profit most from the macro-
scopic thermodynamics.

In this second edition the addition of new materials has been con-
centrated in the chapters dealing with macroscopic thermodynamics
because of the continuing interest in such applications and mcreasmg
severity of problems associated with economical and pollution-free
production of power.



PREFACE

Some discussion of the chapter sequence is in order at this point.
Chapters 1 to 4 present a classical development of the first law of thermo-
dynamics, properties of pure substances, and energy analysis of open
systems. Chapter 5 introduces the subject of statistical thermodynamics
and can be omitted in a course primarily concerned with macroscopic ap-
plications or deferred until the.end of the course. Chapter 6 presents the
second law of thermodynamics and the concept of available energy from a
macroscopic viewpoint. Chapter 7 gives a classical presentation of equa-
tions of state and generalized compressibility relations. Chapter 8 illus-
trates the applicability of statistical thermodynamics to the calculation of
properties of gaseous and solid materials, while Chapter 9 develops the
basic molecular model for kinetic theory of gases and transport phe-
nomena. Both-Chapters 8 and 9 can be omitted in a course devoted strictly
to macroscopic thermodynamics. -

Chapter 10 considers gaseous mixtures from the macroscopvc view-

. bdint, with substantial emphasis placed on air conditioning applications.

The calculation of properties of real-gas mixtures is also discussed but
can be omitted if sufficient time is not available to cover this material.
Chapter 11 gives a classical development of chemical thermodynamics
and equilibrium, including energy analyses of such systems. ‘Chapter 12
discusses a broad variety of power cycles, with strbng emphasis given
to the limitations imposed on efficiency by the second law. Chapter 13
gives an abbreviated treatment of the thermodynamics of compressible
flow, while Chapters 14 and 15 consider some specialized applications
of irreversible thermodynamics and direct energy conversion.

While the text allows for considerable flexibility in topic coverage,
one must insist upon the inclusion of the materials in Chapters 1 to 4
and 6 in order to provide a proper basis for further study. The course,
with these materials as a base, can then move in the direction of ap-
plications most appropriate to those students enrolled.

Additional mention should be made of the material which has been-
added in this edmon Supplementary motivational remarks have been
added to Chapter 1 to stress the importance of thermodynamic analysis in
the production of power and the efficient use of energy resources. More
emphasis has been given to St units in the basic discussion of Chapter 1
and throughout the text. Additional examples and discussion on first law
analysis have been’added in both Chapters 2 and 4 with an expanded list
of problems. Useful relations for calculation of solid and vapor properties
of water down to —40°F have been added to Chapter 3 along with ex-
panded discussions and .examples. Chapter 6 has been enlarged to in-
clude discussions of available energy and availability in steady flow, aiong
with additional examples. Chapter 7 has some new examples and a modi-
fied presentation in some sections. Chapter 10 includes new information
on the calBulation of air-water vapor mixtures, including frost, at low tem-
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peratures. The cﬁapter has been expanded in the latter sections to include
calculations of the properties of real-gas mixtures. Chapter 11 has new
sections and examples dealing with equilibrium in multiple reactions, ef-
fects of nonreacting gases on equilibrium concentrations, the van't Hoff
isobar equation, phase equilibriurr, and the Gibbs phase ruile. Chapter 12
has been expanded to include more examples, a discussion of the Wankel
engine, the practical LiBr absorption cycle, and closed gas-turbine cycles.
Chapter 13 is new and presents the thermodynamics of compressible flow
in a manner which is easily adaptable to most engineering curricula. A
background in fluid mechanics is not required for understanding this
material. :

The author is grateful for the comments and'suggestions received
from individuals who have used the first edition, and most grateful for
those penetrating questions of students that strike at the heart of a sub-
ject and demand clarification and explanation. It is Moped that the new
materials have answered at least some of their questions and will serve,
most importantly, to stimulate further inquiry.

J. P. Hol_man
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1 inodcion

1-1 the nature of thermodynamics

‘Energy propels society. The matchless economic and technologica! ad-
vances of the civilized worid are traceable directly to an incrzasing
-amount of energy available to perform the tasks previously pertormed
through human muscular effort. The availability of goods and services.
and industrial productivity iri general~are divectly related to per capita
. enérgy consumption.

Thermodynamics is the study of energy and its transformation
This statement may seem rather aspiring, because it could be in-
terpreted to mean that thermodynamics is the one science that is most
strongly related to man’s societal needs because of his increasing con-
sumption of energy to produce goods and services. There are many dif-
ferent types of energy: the frictional work of a block sliding on a plane,
electric energy, magnetic energy, nuclear energy, the energy stored in a
quantum of light, the chemical energy of a petroleum fuel, and others. Ali
of these types of energy can fall in the province of thermodynamic anaiy-
sis and we shall examine a variety of applications as the subject
develops. As we shall see later, the laws of thermodynamics limit the
amount of energy which is available to us for performing usefui work.

fln the early beginnings of civilization man was dependent upon his
own muscular effort to hunt and perform whatever farming tasks were
necessary to his survival. With the invention of the wheel he was able to
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expand his sources of enefgy \t‘o‘"_include the muscular effort of work

animals and with the invention of fire he had a source of energy to forge

new instruments and machines of iron and other materials. All the while’
man’s standard of living was steadily rising as more and more energy -.

became available to him to heat his home, form materials of construc-
tion, and expand his communication through better modes of transpor-
tation. With the invention of the steam engine in the 1700s a new source
of power was available to drive machines which could be controlled at
will, independent of the wind, the course of a stream, or the whims and
limitations of an animal. Later in the 1800s and 1900s came the internal
combustion engine, steam turbine, gas turbine, and nuclear power. And
with each new source of energy man’s standard of Iwmg has taken a sub-
stantial upswing.

Today the total production-of goods and services of a nation. the
gross national product (GNP), is directly related to the energy available to
produce the goods. We find that the gross national product per capita is
strongly related to the energy consumption per capita as illustrated in
Fig. 1-1. The data for this figure are for 1961 ‘and by 1970 the GNP for the
United States was $5000 per capita and energy consumption had risen to
330 million Btu per capita. At that time the. United States had 6 percent of
the world’'s population and 'consuméd 35 percent of the energy. So-
called underdeveloped nations are clearly those with less energy per-
capita and less GNP. In Fig. 1-2 we see the long-term trends of energy
use in the United States, with several clearly evident concfusions. Both
the population and per capita energy consumption are growing, pro-
ducing a rapid exponential rise in total energy consumption. The rise has
been so rapid in fact.that a long-term drop in energy required to produce
a unit increase in GNP is now sharply reversed, reflecting the impact of
inflation, the increased costs of environmental protection equipment as-
sociated with power. generation, and the mature status of current energy-
conversion technology.

The long-term implications of the.above data are unmistakable. The
standard of living of a heavily industrialized nation depends on the
supply of energy available to the nation and the efficiency with which it |s
utilized:

We may remark that the overall quality of life depends on many
factors. Clean air and water, spacious green areas for recreation, and the
availability of goods and services all contribute to human satisfaction.
Energy must be consumed to farm the land and transport people and
goods from home to place of employment, and in each of these cases
some pollution of the environment will occur. The impertant point is
that a proper balance must be drawn between uncontrolied energy con-
sumption and pollution and the equally undesirable goal of severely re-
stricted energy use to the point that man’s standard of living is lowered
substantially. ’
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Various sources of energy are becoming increasingly expensive to
produce and one must be concerned with environmental factors involved
in all conversion schemes. For these reasons, more and more attention
must be focused on the efficiency of energy utilization. Thermodynamics
furnishes the scientific basis for analysis of energy-conversion schemes
and thus is central to an understanding of future energy-consumption
trends and their social and economic impact.

Generally speaking, most studies of thermodynamics are primarily
concerned with two forms of energy: heat and work. The principal objec-
tives of the study are to develop basic principles describing these types
of energy and to become conversant with the language surrounding
these basic principles. As in all such studies the first step is to build a
vocabulary of definitions and terms which may be used to conserve
thought as the development becomes more complex. To define
rigorously the various concepts of thermodynamics requires consider-
able space and effort, and will, of course, form a large part of the discus-
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sion in this book. In this intfoductory chapter we seek to give a brief
quaiitative picture of the broad subject of thermodynamics to achieve a
perspective for detailed studies in subsequent chapters. In this respect it
is well to note that many of the qualitative discussions are offered on the
basis of physical reasonableness and should be accepted with the view
that more rigorous definitions and developments will be presented later.
The objective of this chapter is to-achieve an overall picture of the scope
of thermodynamics.

1-2 relation between ¢lassical mechanics and thermodynamics -

The study of classical mechanics involves concepts of force, mass, dis-
_tance, and time. A force has a physical meaning of a “push or pult”
~which may be represented mathematically as a vector with a point of
apphcatlon Mechanics is developed through the application of Newton's

-

laws of motion and, particularly, the second law which states that the ’

summation of forces acting on a particle is propomonai to the time rate
of change of mom‘entum

d
ZF = *d—T (mv)

For purposes of analyzing mechanical systems a free'body is used
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whereby a definite portion of a mechanism is broken away and all forces
acting on this mechanism are specified for use with Newton's second
law. It is important to realize that the mechanical system is specified in
terms of its coordinates of space and velocity. The behavior of the
mechanical system is further described in terms of its interaction with its
surroundings through the application of various forces. We say that the
state of the system may be specified with its space and velocity coordin-
ates and its behavior; i.e., its change from one state to another is
described in terms of its interactions with adjoining mechanisms or sur-
roundings. It may be observed that the mechanical system will not-
change its state, i.e., its position in space and/or its velocity, unless it is
acted upon by some net external force. The important point of this briet
reference to classical mechanics is that the concept of a system (free
body) and specification of the state of a system through the use of space
or velocity coordinates are aiready familiar to those readers with experi-
ence in classical mechanics. .

_Although we are concerned with dynamical quantities in me-
chanics, the analysis of thermodynamic systems is concerned with en-
ergy quantities. A system is described.in thermodynamics by breaking
away a certain quantity of matter similar to the free-body technique in.
mechanics. The matter outside this system is termed the surroundings
and the separation between the system and surroundings is called the
boundary of the system. As an example of a thermodynamic system con-
sider a mass of air contained under pressure in a steel tank. The bound-
ary of the .system would be the inside surface of the tank and the sur--
roundings would consist of the tank and the medium outside the tank. It
is well to mention that the boundary of a system may be either a real or
imaginary surface. The air-tank system is shown in Fig. 1-3.

In mechanics the state of a system is specified by its space and
velocity coordinates. The state of a thermodynamic system is described
by specifying its thermodynamic coordinates. We cannot describe all
thermodynamic coordinates at this point but may note that temperature,
pressure, chemical energy content, etc., are typical examples. These
coordinates are usually denoted as properties of the system. in me-
chanics we noted that a system will not change its state unless there is
some interaction with its surroundings to change its spatial position
and/or velocity. This interaction usually takes the form of an energy
transfer into or out of the system. ‘

When a thermodynamic system changes from one state to another,
it is said to execute a process. -

In the study of thermodynamics we are interested in the changes
which a system may undergo as it executes various processes. Clearly,
we must be able to ‘define the state of the system or its thermodynamic
coordinates if we are to meet with success in describing processes which
the system may undergo. For, if we are to describe the process, we must




