


O

The 4th International
Conference on

DiSTRIBUTED
COMPUTING
SYSTEMS

San Francisco, California
May 14-18, 1984

SPONSORED BY

@) ieeE comPUTER SOCIETY

o THE INSTITUTE OF ELECTRICAL AND
164 ¥'19B4 ELECTRONICS ENGINEERS, INC.

In cooperation with

Association for
Computing Machinery (ACM)
Information Processing

Society of Japan (IPSJ)
Institut National de
Recherche en Informatique
et en Automatique (INRIA)

IEEE CATALOG NUMBER 84CH2021-4

LIBRARY OF CONGRESS NUMBER 84-80276
IEEE COMPUTER SOCIETY ORDER NUMBER 534
ISBN 0-8186-0534-0

COMPUTER
SOCIETY
PRESS




»

The papers appearing in this book comprise the proceedings of the meeting mentioned on the cover
and title page. They reflect the authors’ opinions and are published as presented and without change,
in the interests of timely dissemination. Their inclusion in this publication does not necessarily constitute
endorsement by the editors, IEEE Computer Society Press, or the Institute of Electrical and Electronics
Engineers, Inc.

Published by IEEE Computer Society Press
1109 Spring Street -
Suite 300
Silver Spring, MD 20910

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source.
Libraries are permitted to photocopy beyond the limits of U.S.-copyright law for
private use of patrons those articles in this volume that carry a code at the bottom
of the first page, provided the per-copy fee indicated in the code is paid through the
Cupyright Clearance Center, 29 Congress Street, Salem, MA 01970. Instructors are
permitted to photocopy isolated articles for noncommercial classroom use without
fee. For other copying, reprint or republication permission, write to Director, Publish-
ing Services, IEEE, 345 E. 47 St, New York, NY 10017. All rights reserved. Copy-
right © 1984 by The Institute of Electrical and Electronics Engineers, Inc.

IEEE Catalog Number 84CH2021-4
Library of Congress Number 84-80276
|IEEE Computer Society Order Number 534
'ISBN 0-8186-0534-0 (Paper)

ISBN 0-8186-4534-2 (Microfiche)
ISBN 0-8186-8534-4 (Casebound)

Order from: IEEE Computer Society IEEE Service Center
Post Office Box 80452 445 Hoes Lane
Worldway Postal Center Piscataway, NJ 08854

Los Angeles, CA 90080

4&3:.;» The Institute of Electrical and Electronics Engineers, Inc.

# Crruar o0 macTACn, eI



GENERAL CHAIRMAN’S MESSAGE

bR, ﬂ >

We have seen a strong movement in the past few years towards distributed computing sys-
tems. The cause of this movement is not obvious. Some would argue it is driven by technol-
ogy. I would argue it is a natural part of evolution, fueled by technology, but driven by real
needs that can’t be satisfied by centralized computer systems. But whatever the reason, it is
happening, and it has caused many of us to reevaluate our views about algorithms, operating

systems, languages, and the traditional roles played by CPU’s, memory, mnd communication

structures. I believe this series of conferences has contributed to our understanding of this
movement and has helped to guide it. It has been a great pleasure for me to serve as General
Chairman for this, the Fourth International Conference on Distributed Computing Systems. It
has been especially rewarding to work with so many dedicated volunteers and to be involved in
an area of rapidly growing interest and importance to the computer field.

The primary purpose of this conference is to facilitate dissemination of recent results and
progress, and with the exception of the authors and attendees, it is the Program Chairman and
his committee who make the major contribution. Earl Swartzlander, Jr., together with the
International Program Committee, and his six Vice Chairmen and their program committees,
have done an outstanding job of selecting papers for presentation at this conference. | am also
happy to announce that Earl has been named as the General Chairman for the nex: conference,
and that Ming T. Liu has agreed to serve as Program Chairman.

We have always taken pride in the international participation in this conference. This is
made possible by the efforts of the International Committee which includes Associate Chairmen
from nine countries and was coordinated this year by H. J. Siegel.

As General Chairman, my only job is to ask others to do the work. I was fortunate to find
so many willing and talented volunteers. Managing the publicity for a conference is a difficult
task. It is the publicity deadlines that determine the preconference schedule, and it is the Publi-
city Chairman who keeps us on this schedule. Special thanks go to Bill Buckles who has ably
performed this task for both the third and fourth conferences. Leah Jamieson Siegel, as
Treasurer, has had the difficult Jjob of ensuring we don’t become a financial burden on the Com-
puter Society while at the same time delivering a conference at a reasonable price. For many
attendees, an important feature of this conference has been the pre- and post-conference tutorial
program. Doug DeGroot worked hard to pPut together an outstanding set of four tutorials.
Local arrangements are being handled by S. Diane Smith and James McGraw who have worked
hard to make sure the conference runs smoothly. Special thanks go to Sid Fernbach whose
quick action allowed us (and several other Computer Society conferences) to obtain alternate
space at the Hotel Meridien after the fire at the Cathedral Hill Hotel. Larry Wittie coordinated
our efforts with other professional societies, technical committees and special interest groups.
And as always, we have depended heavily on the staff of the Computer Society’s Conferences
and Tutorials Office, directed by Harry Hayman. Finally, I owe a great debt to Vivian Alsip,
my secretary, without whose help I would be lost. ¥

Many others have given freely of their time and talents. Their names are listed in this
proceedings, but their real reward should be knowing that their efforts have helped. make this
conference a success. ‘

D. H. Lawrie
Urbana, Illinois
February, 1984
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PERFORMANCE ANALYSIS OF A DATA-FLOW COMPUTER
WITH VARIABLE RESOLUTION ACTORS

J. L. Gaudiot and M. D. Ercegovac”

Department of Electrical Engineering-Systems,
University of Southern California,
Los Angeles, CA 90007

» UCLA Computer Science Department,
University of California,
Los Angeles, CA 90024

Abstract

Most data-flow systems assume basic data-flow actors
at a machine language level. In this paper, we propose to_in-
crease the level of the basic data-flow actors, i.e., decrease the
"resolution” with which the compiler looks at the higher level
language. This approach provides a mechanism to control the
communication overhead and improve the overall efficiency of
the machine. The paper presents several of the effects of the
variation of the size of the actors. The observations made us-
ing the deterministic simulation of a data-flow machine are
presented and compared with the results of a simple analyti-
cal model. A trade-off is observed in all cases, and the op-
timal size of the data-flow actor varies with such parameters
as the number of PEs in the multiprocessor and communica-
tions costs.

1. Introduction

In data-flow languages {1,2,3,5,6,9,10] instructions
are scheduled for execution as soon as all their operands
have arrived. A data-flow program is viewed as a graph
made of actors interconnected by arcs. The arcs can car-
1y tokens bearing value. An actor is enabled when all its

input arcs carry tokens. When loops are involved, it is .

necessary to distinguish between the data destined for
different iterations. This can be achieved by labeling the
tokens with their iteration level [4]. In this case, an ac-

tor becomes executable when a complete set of tokens
carrying identical tags is present on its input arcs. To
study the effects of variable resolution actors, we use the
architecture, proposed in [3].

It appears that simplicity alone dictated the
choice of machine language instructions as the basic level
of computation in most proposed data-flow machines: it
is the most natural instruction set since it has an

CH2021-4/84/0000/0002301.00©1984 [EEE

equivalent in conventional computers. The operations
envisioned deal with simple concepts (addition, subtrac-
tion, etc.) and have few operands.

Due to the explicit sequencing model of data-flow
languages, all instructions cause overhead in order to
link them with both their predecessors and successors.
In the case when the resources for processing of instruc-
tions and data communications between processors are
limited, this uncontrolled overhead may degrade the ex-
pected performance. An appropriate grouping of instruc-
tions will lower this overhead while permitting parallel-
ism to be exploited at a higher level.

A model in which actors are not necessarily at the
same level of resolution is a variable-resolution data-flow
model. In this paper, we will therefore deal with data-
flow actors (sometimes also referred to as data-flow tn-
structions) These data-flow actors (or more simply actors
when no confusion is possible) may contain more than
one machine instruction. A machine instruction is an
elementary operation similar to those encountered in the
instruction set of a conventional computer (add, sub-
tract, etc.). Note that when a data-flow actor contains
only one machine instruction, we are considering the
highest possible level of resolution.

. Variable Resolution Model

We assume that the compiler can detect program
structures that are amenable to clustering and group to-
gether the necessary instructions into macro-actors.
(The criteria used are outside the scope of this study).
At run-time, the macro-actors can fire when all the input
arguments are available. The embedded code is executed
inside a PE without external communications, and, as



before, the results are formated into output tokens.
Note that no assumption on the size of the actors is
made, and that, in the same program, several actors of
different size could exist.

Abstraction of the nodes to a higher level can lead
to a more efficient computation when resources are lim-
ited. However, since large macro-actors (with regard to
the size of the program) may lower the available paraliel-
ism, a trade-off exists. The level of resolution is there-
fore a critical parameter, and its influence on the perfor-
mance of a system with limited resources is now dis-
cussed.

The variable resolution approach presents the fol-
lowing advantages and disadvantages:

- A better locality of execution can be obtained
since logically close expressions are grouped together.
The resulting performance is improved due to the
sequential execution, without extra processing, of in-
herently sequential segments of code. While in a "con-
ventional” data-flow system, a result must go through
the entire Matching Store cycle before being available to
the next operator, it is here immediately ready. In this
case, no result needs to be cycled back to the Matching
Store and, therefore, the associated queueing delays are
avoided. A computation isolated inside a macro-actor
can proceed without interruption once it has been ini-
tiated.

- The ratio of the number of arguments (input to
or output from actors) over the total number of variables
that circulate through the machine is lower. . This in
turn leads to a lower number of Matching Store cycles
necessary for a given amount of processing demanded by
the program. Such a reduction on the critical path will
mean shorter execution time.

- A lower number of Matching/Store cycles is ob-
viously brought about by the smaller number of argu-
ments that must now transit through the memory. This
means that, on the average, a smaller memory is needed.
This in turn translates in a savings in terms of cost or,
more importantly, in terms of speed. Since no truly as-

sociative memory of consequent size exists to this day,
hashing algorithms must be employed in order to simu-
late the associative function. Once hashed, the key is
placed in the appropriate memory location. If the loca-
tion is already occupied, a secondary function must be
used. This means that multiple memory accesses are
necessary when collisions of this sort occur. When the
hashing algorithm and the arrival pattern give a random
assignment of memory locations, the size of the store
with regard to the number of elements to access becomes
the critical factor in determining the probability of a col-
lision. Therefore, when a smaller amount of packets are
expected to require storage, the size of the memory can

be reduced or the access time can be improved for the
same cost.

- A lower amount of actual processing (besides to-
ken handling) need to be performed when resolution de-
creases. This has already been discussed in another pa-
per [7].

- Less data movement is involved. The execution
of the program in the macro-instructions can be per-
formed by using internal scratch-pad registers. This
does mnot violate data-flow assumptions because the
behavior of the actors is still functional when viewed
from the outside. No corruption of these registers can
occur because it has been assumed from the beginning
that once a macro-actor has been initiated, its processing
wouid be carried out without interruption.

- A hierarchy will be very appropriate for the code
memory. When a macro-instruction is taken out of the
instruction queue and its execution initiated inside the
processor, its instructions are fetched from the code
memory and sequentially processed. This provides us
with a very good indication of the code that can be pre-
fetched in a multi-level memory system.

- A better performance under low parallelism can
be obtained. It has been observed [6] that, in their basic
form, data-flow machines do not perform well when the
program has little inherent concurrency. It appears that’
a conventional design is a better choice for sequential (or
quasi-sequential) programs. This is due to the fact that

each data-flow instruction has a high intrinsic control
part while von Neumann instructions are simply se-
quenced by their relative position in the listing of the
program. This is where a data-flow system with a vari-
able resolution scheme brings a new advantage. In
effect, the system becomes a hybrid data-flow/von Neu-
mann system, using the advantages of data-flow
languages when parallel execution is possible, rejecting
the scheme and adopting von Neumann concepts when a
sequential execution is warranted.

- Compatibility: The basic assumption of func-
tionality is maintained at the highest level. This means
that data-flow concepts are preserved at the system level
where the control requirements are most complex.
Only at the lowest level, where the overall complexity is
quite manageable, is there a possibility to use other
models of computation such as conventional von Neu-
mann. Of course, the macro-actors can internally use the
data-flow model. That is, a system with several levels of
resolution can use independent data-flow models at each
level. We feel that this property is important for efficient
implementation of hierarchical systems. In comparison,
traditional data-flow models emphasize ”one-level” sys-
tem structure. Note however that, due to the limited
amount of available resources, non-functionality must



exist even if it is at the hardware level of physical adders
in the ALU and scratch-pad registers.

While variable resolution may offer thése many in-
teresting features, notably in terms of overhead reduc-
tion, it conversely could also bring about several draw-
backs:

- More wait than in a low resolution system may
be incurred in some instances. This is due to the fact
that the data-low semantics do not permit an actor to
be fired before all operands have arrived on its input
arcs. Consequently, some outer instructions which would
have otherwise been marked for execution must wait for
the operands of other outer instructions to become avail-
able.

- Similarly, lumping together several data-flow ac-
tors leads to losses in parallelism. This is illustrated
clearly in Fig.1a which shows an excellent candidate for
lumping. The results from the first multiplier are only
used by the other one and therefore should not be made
to go through the entire cycle. However, if this situation
is not present, we will have to group instructions as
shown in Fig.1b. This means that the two adders can no
longer be used in parallel.

Fig. 1.a: A Good Candidate for Lump_ing

Fig. 1.b: Loss of Parallelism with Lower Resolution

- The decision of partitioning is made more
difficult by the use of macro-actors. This introduces the
need for a bigger and smarter compiler that is able to
detect opportunities for macro-actor lumping and will
produce the appropriate code.

- Since the macro-actor contains sequential
machine language for execution, the data-flow assump-
tions are violated. This makes it difficult to call a rou-
tine that is not local to the macro-actor. The program
structure must be kept intact.

IOI. The Analytical Model

The model of data-flow machine which we chose
for performance analysis with variable resolution is dis-
cussed in detail in [11]. The execution graph is the un-
folded graph after all loops and conditional expressions
have been executed. A different execution graph could
be obtained for a different set of input data for the same
program. This graph can be regarded as the execution
trace of the program. Note that the execution graph by
essence can contain no loops or conditional instructions.
It is a pure Directed Acyclic Graph in itself.

From the start of the program to its end, it is
possible to distinguish a path through the execution
graph which is the longest in terms of time. l.e., this
path is drawn from the first executed instruction to the
next, and so on, until the last executed instruction is
reached.

In this first model, each Processing Element con-
tains only one data-flow actor. In this context, the pro-
cessing time of each actor is given by the sum of its asso-
ciated communication time and its execution time. The
communication time is the duration it takes for the
result to reach the next actor on the longest path. On
the average, the total execution time T of the data-flow
program is given by:

T = L(C+E) (1)

where L is the length of the longest path, C is the aver-
age communication cost and E is the average execution
time.

When the number of Processing Elements is much
lower than the number of executed actors, the notion of
longest path is replaced by the notion of ”critical path”.
This critical path is obtained by threading through the
unfolded Directed Acyclic Graph from its root node (last
actor to be executed) to one of its leaf nodes (first actor
to be executed) by using only the links where the last to-
ken to the instruction arrived {11]. Note that this path
would exactly correspond to the longest path as previ-



ously defined if each Processing Element was only allo-
cated to one actor.

Let N be the number of Processing Elements, L
the length of the critical path as defined -earlier, M the
average time spent in the Matching Store, 4 the average
execution time in the PE, and ¢ the average communica-
tion penalty.

The eritical path L can be approximated by a de-
creasing function of the number of processors: factor \/N
in the equation below), and a constant & which
corresponds to the basic, unpartitionable task in the pro-
gram and represents the number of those instructions in
the critical path that will have to be executed sequential-
ly due to the structure of the program:

L={M+6 (2)

where N is the number of Processing Elements, 6 is the
minimal task, and ) + & is the total number of instruc-
tions (i.e., length of the critical path when only one pro-
cessor is used). Note that X can be viewed as the
difference between L, the total number of instructions,
and ¢4, the number of instructions in the unpartitionable
part of the program. Note that the cornmunication cost
C is a linear function of the number N of PEs. This is
due to the fact that, as the same program is allocated to
a larger number of PEs, the average distance that any
token must travel increases proportionately.

The execution time T of the program is therefore given
by:

T = L(A+M+cN) (3)
= (\[N+8)(M+A+cN)

= [MM+A)/ M+({M+A)+cN\)+6cN

Let a = MM+A), = §(M+A)+cx and v = éc. Then
T = (a/N)+8+1N (4)

The term 4N corresponds to the performance fall-off that
will be observed after the optimal number of processors
has been exceeded. The asymptotic line has a slope
y=2éc. The term & corresponds to the longest path
through the tree (if an infinite number of processors was
available); it is a comparatively small number. This
means that the term associated with the slope of the per-
formance fall-off line is small compared to the a and §
parameters. These variables indicate the speedup ob-
tainable with an increase in the number of processors.
In other words, the performance fall-off after the optimal
number of processors has been reached is small compared

to the performance increase observed before this optimal
has been reached.

When resolution is variable and the number of
PEs is fixed, the calculation remains similar. As before,
the total execution time is given by

T = L(A+M+C) (5)

Since the number of instructions is increased by
the resolution factor r, the pure execution time is

A= gy (6)

where g, is the atomic execution time.

The number of input arguments to the new
(lumped) actors is a function of the average fan-out f of
the basic instruction. The problem is similar to finding
the ratio of the surface of a circle over its perimeter.
This is due to the fact that, as the size of the data-flow
actor increases, the number of instructions inside it (sur-
face of the circle) will increase faster than the number of
data arcs leading to it (perimeter). For f=2 (binary
tree), the multiplicative factor is 1/(r+1). It will be ap-
plied to M, the time in the associative memory, as well as
¢, the communication penalty. Note that an extra factor
has been incorporated in the calculation of L in order to
account for the loss of parallelism which will translate
into more waiting for new operands. This is the term er.
It increases as a function of r, the number of instructions
per actor. This is because the critical path is decreased
by the decrease in the total number of instructions (term
A /r), but it is at the same time increased as more wait
on some data arcs will mean other instructions must be
executed. These instructions that are executed during
the waiting state therefore become part of the critical
path:

M = mof(r+1) (7)

where m, is the associative memory time for atomic
data-flow actors;

¢ = cof (r+1)

where ¢, is the average communication penalty for atom-
ic data-flow actors, and

L= X\[(rt+er)

where )\ +¢ corresponds to the previous \+6 (M, and ¢ are
functions of N, the number of PEs). Now

)‘l
T = (—+erlaor+(mot o)/ (r+1)] (8)

After approximating r+1 to r for large values of r,
and after a simplification of the coeflicients we obtain
the new result:

T=(0,/P)+artay” (9)

where
8;=X,(mg+co)
8y=¢(mo+ col+ )18
8y=¢tay



There is again a trade-off curve. Note that the
improvement is a function of 1/, while the degradation
is also a quadratic function. This is in contrast with the
case of the varying number of PEs where only a propor-
tional variation was observed.

After taking the derivative of (8), it can be shown
that the optimal level of resolution is given by:

fo = [Xl("'o + 50)/“‘]”‘ (19)

This demonstrates clearly that the optimal
number of instructions per macro-actor will increase
along with the overhead ration (ratio of communication
and matching time over execution time itself). This can
be seen in the ratio of m, (associative memory) + ¢
{communication costs) over g, (execution time per se). It
can be noted, however, that the increase in resolution is
not proportional to this ratio, but to its 4" root. It

therefore varies rapidly for lower values of the overhead -

ratio. Note also that this optimal value is also a direct
function of x, which is itself proportionally related to
1/N. This means that the optimal number of instruc-
tions per actor decreases with the number of PEs.

These observations lead to the following conclu-
sions: the number of instructions per data-flow actor
must be increased along with the overhead ratio of the
machine. This means that in the case of a poorly
designed processor (such as a non-dedicated processing
element), the level of resolution should be adjusted in
order to provide optimal performance. For example, if
an off-the shelf microprocessor was to be used as the

basic building block of the machine, the associative
memory time m, would be tremendously increased (about
10-fold) for a comparatively constant execution time a,.
The level of resolution would then have to be modified.
Likewise, if the communication network was slow or
overloaded (term c), the level of resolution would vary
in the same ratio.

Note, however, that this model is a mean-value
model and that the results obtained are not an accurate
predictor of the execution of a particular program but
rather will describe the overall performance of the execu-
tion of a class of programs

IV. Simulation And Analysis

In order to confirm the above comments, a deter-

ministic simulation of a hypothetical data-flow machine
similar to (8] was undertaken. The results of the simula-
tion were compared with the prediction of a simple
analytical model. Two cases, discussed below, are con-
sidered for performance evaluation.

Case I: Varying the number of Processing Elements

During the simulation, we observed the behavior
of the machine with regard to a variable number of PEs.
One benchmark was a binary tree with 9 levels. The ra-
tionale for the binary tree are several-fold. First, the
number of levels was so chosen because it provided a siz-
able number of instructions (1023) for a range of PEs(1
to 192). The very regularity of the graph pattern al-
lowed us to automatically create the data-flow program
and easily modify parameters such as allocation and size
of the basic data-flow actor. Then, although the shape of
the computation is very geometric by choice, it should be
noted that on the overall, the obtainment of any single
result from a program will go through a similar pattern.
This means that when several results are expected, we
would observe several of these trees intertwined. Fig. 2.
represents the execution time of the program as a funec-
tion of the number of Processing Elements in the system.
The following can be observed from the simulation
results:

- In a first part (from 1 to 30 Processing Ele
ments), a virtually hyperbolic improvement in perfor-
mance exists. This means that communication costs have
practically no effect at all on the performance at this
point. The tokens have a comparatively smaller transit
penalty to incur and, since the number of Processing Ele-
ments is still small, a large part of the tokens are still lo-
cal. Note the drastic speed-up obtained: a ratio of 23
between the execution with 1 PE and the execution with
32 PEs.

- A plateau in the total execution time happens
when the machine has between 30 and 60 processors.
This is due to the fact that the increase in communica-
tion costs now offsets at each step the improvement in
performance. An important conclusion can be drawn:
this plateau means that the choice of the number of ele-
ments in the machine does not have a drastic influence
on the final performance, and that it is better, at alloca-
tion time, to include more processors than estimated
necessary.

- A slow fall-off, almost linear after 60 PEs is due
to the increasing importance of the communication
penalty: the same number of instructions is now spread
across a higher number of processors. The locality ratio
is diminished and delays proportionally increase. Howev-
er, the degradation is very slow. This confirms an earlier
statement about the choice of the number of processors.
Note that this experiment does not mean that data-flow
machines cannot comprise more than 60 PEs if they are
to be efficient at all. In fact, it indicates that the alloca-
tion process must be optimized in its choice of the
number of PEs, possibly by not using all the processors
at its disposal in the physical machine.
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It should be noted that these observations are
comparable to the results of [8] which confirms the ap-
propriateness of the choice of a binary tree for a bench-
mark.

Case 2: Varying the level of resolution

The next experiment performed consisted in
lumping together several instructions. The same binary
tree benchmark was kept. In order to conserve some re-
gularity, groupings were done with clusters of 3, 31, and
63 instructions. Fig. 3. shows a 3-level binary tree super-
imposed on the corresponding 4-tree of clusters of 3 in-
structions.

At the simulator level, each cluster of 3 instruc-
tions is assigned a special instruction code. In ap actual
machine, it would correspond to a pointer to the actual
code to be executed. This code could not be standard-
ized and thus would be created by the compiler. Note
that the instruction packet contains 4 operands in this
example.

For consistency purposes, the same amount of cal-
culation was kept independently from the resolution.
This means thst, for example, a binary tree with 8 levels
becomes a 4-tree with 4 levels at resolution 1/3.



