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EDITOR'S PREFACE

Approach your problems from the right 1t isn't that they can't see the solution.
end and begin with the answers. Then It 15 that they can't see the problem.
one day, perhaps you will find the final

question. G.K. Chesterton. The Scandal of Father

Brown ‘The Point of a P,
*The Hermit Clad in Crane Feathers' in
R.van Gulik's The Chinese Maze
Murders.

Growing specialization and diversification have brought a host of rnonographs and
textbooks on increasingly specialized topics. However. the "iree" of knowledge of
mathematics and related fields does not grow only by putting forth new branches.
It also happens, quite often in fact, that branches which were thought to be complietely
disparate are suddenly seen to be related.

Further, the kind and level of sophistication of mathematics applied in various sciences
has changed drastically in recent years: measure theory is used (non-trivially) in re-
gional and theoretical economics; algebraic geometry interacts with physics;  the
Minkowsky lemma, coding theory and the structure of water meet one another in pack-
ing and covering theory; quantum fields, crystal defects and mathematical programming
profit from homotopy theorv; Lie algebras are relevant to filtering; and prediction
and electrical engineering can use Stein spaces. And in addition to this there are such
new emerging subdisciplines as “"completely integrable systems", "chaos, synergetics
and large-scale order", which are almost impossible to fit into the existing classification
schemes. They draw upon widely different sections of mathematics.

This program, Mathematics and lts Applications, is devoted to such (new) interrelations
as exempla gratia:

- a central concept which plays an important role in several different mathematical
and/or scientific specialized areas;

- new applications of the results and ideas from one area of scientific endeavor into
another;

- influences which the results, problems and concepts of one field of enquiry have
and have had on the development of another.

The Mathematics and Its Applications programme tries to make available a careful
selection of books which fit the philosophy outlined above. With such books, which
are stimulating rather than definitive, intriguing rather than encyclopaedic, we hope
to contribute something towards better communication among the practitioners in
diversified fields.

Because of the wealth of scholarly research being undertaken in the Soviet Union,
Eastern Europe, and Japan, it was decided to devote special attention to the work
emanating from these particular regions.

Thus it was decided to start three regional series under the umbrella of the main
MIA programme.

The idea of symmetry and transformation groups is, nowadays, a pervasive ohe in
physics. Indeed a somewhat arbitrary, but probably reasonable random, sampling of
mathematical physics papers in 1983 indicated that some 35 percent of the papers
deal with aspects of symmetry, groups, lie algebras, or representations in one way
or another.

xiii



xiv ) EDITOR'S PREFACE

Next to the uses of representation theory 1n gquantum mechanics the modern era has
seen groups and symmetry ideas entering into the study of also nonlinear differential
equations and e.g. the theory of critical phenomena. It is amazing how much infor-
mation can be obtained from the transformational properties (under a group) of a
model without actually solving the model. And this can be done - as such things go
- with quite modest mathematical tools. This has become such a successful approach
that 1t has become something of a methodological axiom: first investigate the trans-
formational properties and then use the results to go some way to actually solving
a model. This book is precisely about the first phase; a systematic account of the
use of symmetry and transformation group ideas to tackle the problems of mathema-
tical physics. : ’

The unreasonable effectiveness of mathe- As long as algebra and geometry pro-
matics i science ... ceeded along separate paths, their

advance was slow and their applications
Eugene Wigner limited.

But when these sciences joined company
Well, if you knows of a better 'ole, go to they drew from each other fresh
1. vitality and thenceforward marched

on at a rapid pace towards perfection.
Bruce Bairnsfather )

Joseph Louis Lagrange
What 1s now proved was once only
imagined.

W litam Blake

Bussum, August 1984 Michiel Hazewinkel



AUTHORS' PREFACE

This book is totally concerned with investipgations of the
problems of mathematical physics by means of group.theoretical
methods. A sufficiently clear idea of what it contains can

be gleaned from its table of contents. In order to ensure

a selfcontained treatment and to make it accessible to
specialists from applied disciplines an introductory chapter
has been added.

My work has to a high degree profited from lonptime contacts
with Professor L. V. Ovsiannikov and our joint seminar on
"oroup theoretical analysis" at the University of Novosibirsk.
The idea to present the results obtained in the form of a
separate book arose during discussions with Professor

6. Birkhoff., I am most grateful to him for his critical
remarks and valuable advice.

A significant part of the material has been presented in
lectures (cf. [111) which I gave at various times for students
at the University of Novosibirsk. The final version of the
book took form after a course of lectures at the Collége de
France in the spring of 1979, I consider it a particular
pleasure to thank Proffessor A. Lichnerowicz, who organized
this series of lectures and who took a lively part in the
discussions.

During various stages of the writing parts of the book were
subjected to critical scrutiny by Professor S, P. Novikov and
Professor A. B, Sabat. Dr. V. M., Tesukov gave valuable help

in writing of § 4.4., R. S. Hamitova carefully perused the
whole manuscript and found a series of inaccuracies in the
development of various fragments, To all these 1 express my
deepfelt thanks. I alsc thank all those colleagues who sent

me their (p)reprints concerning new results on the matters
discussed in this book,

18 January 1982 N. H. Ibragimov.
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INTRODUCTORY CHAPTER

GROUPS AND DIFFERENTIAL EQUATIONS

§ ]. Continuous Groups

1.1. Topological groups.

A topological space G endowed with a group operat}on
+ is called a topological group if the map (a,b) a*b
(where b ! is the inverse of the element b 1in the group
G) of the product space G X G into G is continuous.

In the investigation of the local properties of the
topological groups, we can restrict ourselves to considera-
tion of a neighborhood of the identity element of the given
group G, because for any fixed element a € G, the map
X x°a is a homomorphism of the topological space G onto
Y itself and takes 'a into the identity element of G,

A set Hc G is called a subgroup of the topological
group G 1if it is both a closed subset of the topological
space G and a subgroup of the group G. Igifin addition,
H 1is an invariant subgroup of 6 (i.e., a "*Hea =H for
each a € G), then H 1is called an ¢nvariant subgroup, or
a normal subgroup of the topological group G. Llet H be
an invariant subgroup of the topological group &, -and let
G/H be the family of all pairwise disjoint cosets He-a,
with a € G. A topology and a group operation are naturally
introduced on G/H, induced-by the topology and the\group
operation on G. The outcome is a topological group " G/H,
called the quotient (or factor) group of the topological —
group G by its invariant subgroup H.

A map f£:G > G' is an Zsomorphism of the topological
group G onto the topological group G’ if  f 1is both an
isomorphism of groups and a homeomorphism of topological
spaces. If the map f is continuous and 2 homomorphism of
tbe group G into the group G', then f is a homomorphism
of the topological group G into the topological group G'.

kY



2 TRANSFORMATION GROUPS

1.2. Lie groups.

Let M, UcM, and ¢ be, respectively, a connected
Hausdorff topological space, an open subset of M, and a

homeomorphism of U onto ar open subset of R . The pair
(U,p) 1is called a (m~dimensional) chart on, M; U is the
domain of the chart, while the functions ¢~ = prje@:U -+

> R™ (i =1,...,m) are local coordinates. Here pri stands
for the projection onto the i-th coordinate axis in m.

if x=x...,x™ € RM, then pri(x) = x1. Given any point

a € U, the mtuple (9)...,¢™) 1is said to be a system of
local coordinates at a, and the real numbers xi = ol(a)
are the coordinates of the point a relative to the system
of coordinates (p!...,pM). A system of local coordinates
will be denoted alternatively by {xi},

A topological space M is said to be an m-dimemsiongl
(topological) manifold if there exists a family of charts
on M whose domains cover M. Whenever (U,p) is a chart
on M and V< U 1is open, the restriction ¢ y Will be
a homeomorphism of V onto an open subset of 'RM™, Thus
(V,wlv) is a chart on M, called the restriction of the
chart (U,p) to V. )

The following concept of a differentiable structure
makes it possible to define the differential calculus on
manifolds. Two charts (U,p) and (U,¥) having a
common domain on the manifold M, are said to be CP-
compatible if the maps Pop~? o p(U) > P(u) and
@°y! : P(U) > @(U) are p-times continuqusly
differentiable. Two arbitrary charts (U,  and
(V,9) on M are CP-compatible if their restrictions
to U NV are CP-compatible, or if their domains do
not intersect. A CP-agtlas of the m-dimensional manifold M
is a family of paitwise CP-compatible charts on M
whose domains cover M. Two CP-atlases are equivalent if
their union is a CP-atlas. A CP-differentiable strmictuvers
(p 1is a positive integer or ®) on the ﬁanifplémﬂﬁ is an
equivalence class of CP-atlases uf Mi~ Edvi¢vaBently, a aif-
ferentiable structure may be defined a¥:¥ Maxfm&tiatlas of
the manifold M; such a maxinil dtlas id' the union of all
atlases belonging to the partidlilar efuivalence class under
consideration. ' ’

A manifold M equipped with a CP-differentiable struc-
ture is termed an m-dimensional differentiable manifold of
elass CP, or an m-dimensional CP-manifold. In order to obtain



GROUPS AND DIFFERENTIAL EOUATIONS 3

a differentiable manifold, it suffices to specify an erbitrary
atlas, out of the equivalent atlases of the manifold under
consideration. Replacing CP-functions by analytic ones (in
the definition of an atlas), we arrive at the notion of an
m-dimensional analytic manifold. Henceforth, if not other-
wise stipulated, all the manifolds under consideration are
endowed with a C®-differentiable structure,

Let M and N be differentiable manifolds of dimensions
m and n, respectively. A continuous mapping f:M ~» N is
said to be p~times continuously differentiable (or of class
CP) if for arbitrary charts (@U,p) on M and (V,§) on
N, with domains satisfying £f(U) € V, the local representa-
tive of . £, i.e., the mapping WYeo(f U)°w_l of the open set
@) =« g™ into the open set Y(V) < RT, is p-times con-
tinuously differentiable. If M and N are analytic manifolds
and the local representatives of f are all analytic, then
f 1is said to be analytic. When N = R, f is also referred
te as a (real) fumction defined on the manifold M. The above
notions can be similarly applied to mappings defined locally,
i.e., defined on open subsets of the manifold M.

A curve Y on the manifold M passing through the point
X €M 1is a continuously differentiable map Yy : I > M,.
with I an open interval on the real line R, 0 € I, and
v(©) = x. Two curves, Yy and Yy, , passing.
through x € M, are tangent at x if the derivatives of the
local representatives of Yy; and Y, at 0 coincide. Tt is
clear that tangency at x does not depend on the choice of
the chart used to calculate the loecal representatives, and
yields an equivalence relation ampng the curves passing through
a fixed point of the given manifoEd. The equivalence class of
any curve Y passing through x € M, 1i.e., the family of all
curves passing through x and tangent to vy, is called a
vector tangent to M at the point x and is denoted by
[Ylx. The tangent vector [Y], may be viewed also as the
derivative: vy (0) of a local representative of Yy at the
point O, thus explaining the use og the notation Y'(O)‘ along
with [y]y . The set of all tangent vectors at thé point x
is called the tangent space to M Et X, and is denoted by
Mg. If dim M = m then one can endow My ‘with a structure
of m-dimensional vector space using the differentiable struc-
ture of M. To this end, we may choose a chart (U,p) in
a neighborhood of x, i.e., with x € U, and define a map-
ping 6 : My * g™ by the rule: 6 takes each tangent vec-
tor [ylyx into the derivative of the local representative
0y of the curve Y at 0. Then 9 is one-to~one and onto,
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and can be used to introduce on My the required vector-
-gpace structure, Indeed, the sum of the tangent vectors
[yilx and {yv2]y, and multiplication of [Y]x by a real
number A are defined as

[v,Ix + [Y,0x = 87 1(h, + hy), Alylx = 61 Oh),

where hj = 6([y;ly), *i =1,2 h= ([veD.

The dual space M, to Mg, i.e., the space of linear
mappings M, > R, 1is called the cotangent space to M at
x. The tensors at the point X € M are defined as affine
tensors over the vector space My, 1i.e., as real multilinear
maps on products of copies of M; and M;. More precisely,
a tensor of contravariant order r and covariant order s,
or simply a tensor of type ‘(r), at the point X € M, is
a multilinear map M: X L ..0X Mx XM, X oo XM >R. A

r s
tensor field of type (X¥) on the manifold M is determined
by associating with each point x of M a tensor of type
(¥). at x. In garticular, one can use the isomorphism betwee
the spaces and My to define a vector field £ on

" manifold x E(x) € My which takes each point x € M into

a (uniquely determined) tangent vector to M .at x. :

An analytic manifold G with a group operation =+ de-
fined on it is a Lie group if the mapping (a,b) a*b ! of
the product-manifold G X G into .G 1is analytic.

1.3. Local groups

A topological space G is said to be a local group if
there exists an element (the identity) e € G and neighbor-
hoods U,V (with V< U) of e, such that there is-a map-
ping - U Xx U-~+ U, (a;b) a*b ('a local group operatipn)
satisfying the following conditions: o 3

(1). V*V c U: ;

£2) (a+b)ec = a»(b»c) for all a;b,e € V;

(3) e*a = a*e = a . for all a € Ug

_ (4) for any a E V. there_exists the (1nvense) elenent
! € U, such that asa ! = a l'a = e T R _

(5), the mapping (a,b) « a°b’ ! is continuous on  U. X V,

The above neighborhoods, U _and V, are not uniquely
determined: they can be replaced by suitably selected smaller
neighborhoods of e, U'cU and V' © V. This freedom in
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the definition of a local group guarantees that the notion
introduced above is general enough to be useful in solving
local problems and at *he same time increases the applicability
of group-theoretic methods. According to this definition, every
topological group is also a local group.

A closed subset H of the local group G, containing
the identity e € G, 1is a subgroup of (the local group) G
if H is itself a local group, relative to the local group
operation in G, 1If, in addition, one can find an open
neighborhood U< G of e such that a '+b*a € H for all
a€U and b€ UNH, thenr H is said to be an ZTnvariant
subgroup (or a normal subgroup)of the local group G. The
quotient group G/H of the local group G by its normal
subgroup H is constructed as in the case of tomological
groups, except that here the elements of G/H are the cosets
module H of the elements belonging to some neighborhood of
the identity of G.

The family of local groups is divided into equivalence
classes by employing the following notion of local iso-
morphism. Let G and G' be two local groups with
identity elements e and e', respectively, and let U,V
and U',V' be neighborhoods of e and e' satisfying the
axioms 1-5. Let f : U = U' be a homeomorphism such that
f(V) €« V' and f(a*b) = f(a)*£(b) for all a,b € V. Then
the mapping f 1is referred to as a local isomorphism, and
the groups G and G' are said to be locally isomorphic.
The inverse mapping f ' (or possibly its restriction to
some neighborhood of e') 1is also a local isomorphism. .The
usual properties of the group isomorphisms hold here as well:
f(e) = , and f(a ') = (f(a))"! for all a € V.

1.4, Local Lie groups.

Suppose G 1is a local group, (U,®») is an r-dimensional
chart on G with e € U, the local group operation in G
is defined in U, and the homeomorphism ¢ satisfies
@(0) = e, Further, let Vc U be an open subset selected
so that U and V satisfy conditions 1-5, § 1,3, and let the
mapping (a,b) + a*b be analytic in V X V. Then we say '
that analytic coordinates were introduced in the local group
G. That is to say, the coordinates cl (i = 1,...,r) of the.
element c = a*b € U in the local chart (U,w) are analytic
functions cl = pical...,ar, bl...,bT) of the coordinates
al, b1 of the elements a,b € V in the local chart (V, wlv).



