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Preface

This book began as the notes for a one-semester course at Camegie-
Mellon University. The aim of the course was to give an introduction to
deterministic optimal control theory to senior level undergraduates and first-
year graduate students from the mathematics, engineering, and business
schools. The only prerequisite for the course was a junior level course in
ordinary differential equations. Accordingly, the backgrounds of the
students were widely dissimilar, and the common denominator was their
interest in the applications of optimal control theory. In fact, one of the most
popular aspects of the course was that students were able to study problems
from areas that they would not normally cover in their respective syllabi.

This text differs from the standard ones in that we have not attempted to
prove the maximum principle, since this was beyond the background and
interest of most of the students in the course. Instead we have tried to show
its strengths and limitations through examples. |

In Chapter I we introduce the concept of optimal control by means
of examples. In Chapter II necessary conditions for optimality for the linear
time optimal control problem are derived geometrically, and illustrations
are given. In Chapters III and IV we discuss the Pontryagin maximu:n
principle, its relation to the calculus of variations, and its application to
various problems in science, engineering, and business. Since the optimality
conditions arising from the maximum principle can often be solved only
numerically, numerical techniques are discussed in Chapter V. In Chapter
VI the dynamic programming approach to the solution of optimal control
problems and differential games is considered; in Chapter VII the
controilability and observability of linear control systems are discussed, and
in Chapter VIII the extension of the maximum principle to state-constrained

ix



X Preface

contro] problems is given. Finally, for more advanced students with a
background in functional amalysis, we consider in Chapter IX several
problems in the control of systems governed by partial differential
equations. This could serve as an introduction to tesearch in this area.

The support of my colleagues and students at Carnegie-Mellon
University has been invaluable during this project; wnhout it this text would
almost certainly not have appeared.
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Chapter I Examples of Control Systems;
the Control Problem

Example 1 Consider a mechanism, such as a crane or trolley, of
mass m which moves along a horizontal track without friction. If x(¢) re-
presents the position at time ¢, we assume the motion of the trolley is
governed by the law

mi(t) = u(t), t>0, (1)

where u(¢) is an external controlling force that we apply to the trolley
(see Fig. 1). Assume that the initial position and velocity of the trolley
are given as x(0) = x,, x(0) = y,, respectively. Then we wish to choosca
function u (which is naturally enough called a control function) to
bring the trolley to rest at the origin in minimum time. Physical
restrictions will usually require that the controlling force be bounded
in magnitude, i.c., that ‘

|lu(n)] < M. 2
For convenience, suppose that m = M = 1, and rewrite Eq. (1)
xl = X2, 'i2 = u(t)v

where x,(t) and x,(t) are now the position and velocity of the body at
time ¢. Equation (1) then becomes

[i] - [8 é][i,] + m ()



2 I. Examples of Control Systems
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Fig. 1
or
x(1) = AX(1) + bu(t),  x(0)= B“)] (3)
0
where ’

_10 1 _|o | x(n)
A—[O 0] and b—[l:l, x(t)——[xz(t)],

and the control problem is to find a function u, subject to (2), which
brings the solution of (3), x(2), to [3] in minimum time t. Any control
that steers us to [3] in minimum time is called an optimal control.
Intuitively, we should expect the optimal control is first a period of
maximum acceleration (4 = + 1), and then maximum braking (u = -- 1),
or vice versa.

Example 2 (Bushaw [1]) A control surface on an aircraft is to be
kept at rest at a fixed position. A wind gust displaces the surface from
the desired position. We assume that if nothing were done, the control
surface would behave as a damped harmonic oscillator. Thus if 6
measures the deviation from the desired position, then the free motion
of the surface satisfies the differential equation

G+ ab + w*6=0

with initial conditions 8(0) = 8, and 6(0) = &,. Here 8, is the displace-
ment of the surface resulting from the wind gust and 6, is the velocity
imparted to the surface by the gust. On an aircraft the oscillation of the
control surface cannot be permitted, and so we wish to design a -
servomechanism to apply a restoring torque and bring the surface
back to rest in minimum time. The equation then becomes

0(0) + ab(t) + 0?6(t) = u(t),  80)=8,, O6(0)=8,, (4

where u(t) represents the restoring torque at time ¢. Again we must
suppose that [u(r)|] < C, where C is a constant, and by normalization



Examples of Control Systems 3

can be taken as 1. The problem is then to find such a function 4, so
that the system will be brought to § = 0, f = 0 in minimum time.

Itis clear that if 8, > 0 and 8, > 0, then the torque should be directed
mitially in the direction of negative § and should have the largest
possible magnitude. Thus u(f) = —1 initially. However, if u(t) = —1
is applied for too long a time, we shall overshoot the desired terminal
condition 6 = 0, @ = 0. Therefore at some point there should be a
torque reversal to + 1 in order to brake the system.

The following questions occur:

(1) Isthis strategy indeed optimal, and if so, when should the switch
take place?

(2) Alternatively, is it better to remove the torque at some point,
allow a small overshoot, and then apply +1?

(3) In this vein, we could ask whether a sequence of —1, +1, —1,
+1, ... of n steps is the best, and if so, what is n and where do the
switches occur?

Again we are led to controls that take on (only) values + 1; such
controls are called bang-bang controls.

Note that as before, setting x, = 0 and x, = 8, we can write the
system equation (4)

'tl =x2, xl(o)zeo’
X, = —ax, —wlx; +u,  x,(0)=80,,
: 6

X = AX + by, : x@:[?}
, %

where

0 1 0
A= , b= ,
R
and u is chosen with |u(f)] < 1 and to minimize
cm:ﬁw@
where ¢, i1s any time for which x,(t,) = 0 and x,(¢,) = 0.

Example 3 (Isaacs [3]) Let x(¢) be the amount of steel produced
by a mill at time t. The amount produced at time ¢ is to be allocated
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to one of two uses:

(1) production of consumer products;
(2) investment.

It is assumed that the steel allocated to investment is used to increase
productive capacity—by using steel to produce new steel mills, trans-
port facilities, or whatever. Let u(t), where 0 < u(t) < 1, denote the
fraction of steel produced at time ¢ that is allocated to investment. Then
- 1 — u(t) represents the fraction allocated to consumption. The assump-
tion that the reinvested steel is used to increase the productive capacity
could be written

i ku(t)x(o), where x(0) = C — initial endowment,
where k is an appropriate constant (i.e., rate of increase in production
is proportional to the amount allocated to investment).

The problem is to choose u(t) so as to maximize the total consumption
over some fixed period of time T > 0. That is, we are to maximize

fo’" (1 = u(ey)x(p) dr.

For this problem, do we consume everything produced, or do we
invest some at present to increase capacity now, so that we can produce
more and hence consume more later? Do we follow a bang-bang

~ procedure of first investing everything and then consuming everything?

Example 4 Moon-Landing Problem (Fleming and Rishel [2])
Consider the problem of a spacecraft attempting to make a soft landing
on the moon using the minimum amount of fuel. For a simplified model,
let m denote the mass, h the height, v the vertical velocity of the space-
craft above the moon, and u the thrust of the spacecraft’s engine
(m, h, v, and u are fung:tions of time). Let M denote the mass of the
spacecraft without fuel, h, the initial height, v, the initial velocity, F
the initial amount of fuel, & the maximum thrust of the engine, k a
constant, and g the gravity acceleration of the moon (considered
constant). The equations of motion are

h=nv, |
= —g+m 'y,
m= —ku,

‘»
N



General Form of the Control Problem 5

and the control u is restricted so that 0 < u(t) < «. The end conditions

are
h(0) = hy,

v(0) = vg,
m0) —-M-—-F=0,
- h(ty) =0,

v(t,) =0,
where ¢, is the time taken for touchdown.
With
X, =h, X, =0, Xz=m,

X(0) = (ho, vo, M + F)T,
x(t,) = (0,0, anything)",

this problem becomes, in matrix form,

X2
X=|—-g+x3u|="10xu),
—ku

and we wish to choose u so that 0 < uft) < « and

‘_M—F-ﬂ%ﬁurh=ﬂwm

is 2 minimum.
However, x; = — ku, so the above becomes

—M-F+kﬁwMﬁ,
and this is minimized at the same time as
Cw=ﬁwma

Note that although these problems come from seemingly completely
different areas of applied mathematics, they all fit into the following
general pattern.

GENERAL FORM OF THE CONTROL PROBLEM

(1) The state equation is

X = flt, X s o0 s Xy Ugse o oy Uy, i=1,...,n,

1 AR S e b nw s ] PR o



6 I. Examples of Control Systems

or in vector form
i = f(tJ x, u)’

where

(2) The initial point is x(0) = x, € R", and the final point that we
wish to reach is x, € R". The final point x, is often called the target
(point), and may or may not be given.

(3) The class A of admissible controls is the set of all those control
functions u allowed by the physical limitations on the problem. (In
Examples 1 and 2 we had A = {u : {u(t)| < 1} and m = 1.) Usually we
shall be given a compact, convex set O = R™ (the restraint set) and we
shall take

A= {u=(u,, ..., u,): u; piecewise continuous and u(t) € Q}.

(4) The cost function or performance index quantitatively compares
the effectiveness of various controllers. This is usually of the form

Clw) = [, folt, xte) u(e)) s,

where f;, 1s a given continuous real-valued function, and the above
integral is to be interpreted as: we take a control u € A, solve the state
equations to obtain the corresponding x, calculate f; as a function of ¢,
and perform the integration. If a target point is given (so called fixed-
end-point problem), then ¢, must be such that x(¢,) = x,. In particular,
if f, = 1, then C(u) = t,, and we have the minimum-time problem. If a
target point is not given ( free-end-point problem), then ¢, will be a fixed
given time, and the integration is performed over the fixed interval
[05 4 1]'

The optimal control problem can now be formulated: Find an
admissible control u* that minimizes the cost function, i.e., for which
C(u*) < C(u) for all u € A. Such controls u* are called optimal controls.

We shall first investigate in depth in Chapter 2 the linear (i.e, state
equations are linear in x and u) time optimal control problem, deriving
a necessary condition for optimality known as Pontryagin’s maximum
principle [4].
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Chapter 11 The General Linear Time
Optimal Problem

1. INTRODUCTION

Consider a control system described by the vector differential
equation ' '

%0 = AWxE) + Boulr),  x(0) = xo € R", )
where '
f-x,(t) —“n(t)
x=1: |, W) =| ¢ |,
| x.{t) | 4al?)
—“1 W(8). 0 ayft) an(‘) s byt
Ale) = azg(t) e az;.(f) , Bl) = bz:x(f) T bz»:u(t) ’
lan® - auld bu® - belt)

and we assume the elements of A(t), B(t) are integrable functions over

any finite interval of time.
The set of admissible controls will be

A={u=(uy,... ) :Ju() <1, i=1,..,m} 2)
A target point x, € R" is given, and the control problem is to mini-

mize the time ¢, for which x(t,) = x,.
9



