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Arnold Toynbee, Experiences, Oxford University Press, pp. 12-13, 1969.

... at about the age of sixteen, I was offered a choice which, in retrospect,
I can see that I was not mature enough, at the time, to make wisely.

This choice was between starting on the calculus and, alternatively, giving
up mathematics altogether and spending the time saved from it on
reading Latin and Greek literature more widely. 1 chose to give up
mathematics, and 1 have lived to regret this keenly after it has become
too late to repair my mistake. The calculus, even a taste of it, would
have given me an important and illuminating additional outlook on the
Universe, whereas, by the time at which the choice was presented to me,

I had already got far enough in Latin and Greek to have been able to go
farther with them unaided. So the choice that I made was the wrong
one, yet it was natural that I should choose as I did. T was not good

at mathematics; I did not like the stuff . . .. Looking back, I feel sure
that I ought not to have been offered the choice; the rudiments, at least,
of the calculus ought to have been compulsory for me. One ought, after
all, to be initiated into the life of the world in which one is going to have
to live. I was going to have to live in the Western World . . . and the
calculus, like the full-rigged sailing ship, is . . . one of the characteristic
expressions of the modern Western genius.



PREFACE

Organizational changes

The goal of this edition remains the same as that of the first two editions:
To provide the student and the instructor with a readable, flexible text that
covers the important topics of single and multivariable calculus as simply
and clearly as possible.

When both users and nonusers of the second edition made the same
suggestions in the survey conducted by the publisher, I accepted their
advice. As a result, the antiderivative and the definite integral are treated
much earlier. Limits precede the derivative. An optional section on &, 6
hasbeenadded. The treatment of the number ¢ has been drastically revised.

Plane curves, applications of the definite integral, series, and multiple
integrals are now covered in single chapters. The discussion of line
integrals and Green’s theorem and its-generalizations has been reorganized
and expanded. Vectors are treated before partial derivatives so that
directional derivatives and the gradient can be treated with partial
dertvatives.

There have been some deletions and many additions, such as optional
sections on complex numbers, the relation between the exponential function
and the trigonometric functions, separable and linear differential equations,
and the role of the Jacobian in change of variables. Two new overview
sections, “What to do in the face of an integral” (Sec. 7.9) and “How to
set up a definite integral” (Sec. 8.3), should prove helpful. Optional
sections on Kepler’s laws and Maxwell’s equations have been added, with
the former developed through a sequence of exercises. The appendixes
now include a review of algebra and a treatment of change of coordinates.
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Pedagogical changes

Applications

Exercises

Epsilon, delta

The derivatives of the trigonometric, exponential, and logarithmic
functions are still done quite early because of their importance in appli-
cations and the students’ need for extensive practice with them. Further-
more, the arguments that obtain the derivatives of these functions reveal
more clearly the idea of a limit than does the algebra that produces the
derivative of a polynomial (in which Ax can be set equal to 0 with
impunity). Also, L’Hopital’s rule is presented early in order to make it
available throughout the course.

Once again I have strengthened the chapter summaries, which students
find very helpful; they provide an emphasis and perspective that individual
sections cannot. Also I have added many more asides in the margin to
guide the student. Figures have been revised and many new ones added:
they are now numbered.

The number and variety of applications have been increased. This has
been done primarily through exercises since I wanted to keep the main
exposition uncluttered. Applications vary in length from a brief mention
in an exercise to one- or two-page presentations in the text. They are
listed in the index under “applications.”

I have not counted the exercises, but there are more than enough of all
degrees of difficulty. Exercises before the single box (M) are routine. These
generally now come in pairs, with each odd-numbered exercise comparable
to the following even-numbered exercise. They focus principally on
definitions and drill, and so should not constitute a full homework assign-
ment. Exercises between the single box and double box may involve more
steps or computations. Exercises after the double box may be more
challenging or offer alternative perspectives or further applications. Often
the most interesting (but not necessarily the most difficult) problems are
to be found here. The back of the book contains answers to the odd-
numbered exercises and guide quizzes. Calculator exercises are included
when appropriate.

Section 2.4, which is new, is devoted to the ¢, § definition of limits. It
begins with the definition of lim,_,, f(x) = oo, for which the concept, the
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diagrams, and the details are easiest. Then, after dealing with
lim,., f{(x)=L,itturnsto lim,., f(x) = L. This section may be omitted
(it is marked “optional”) or it may be covered in one to three lectures,
depending on the depth of treatment.

The level of difficulty is controlled by the choice of sections and exercises
and by the pace. The exposition has been kept as simple as possible, with
a strong emphasis on motivation. The text can serve students of widely
varying abilities and interests, such as those in engineering, the physical
sciences, mathematics, economics, and biology.

The text now contains solutions to two types of differential equations:
separable and linear with constant coefficients. The first are included
because of their use in the differential equations of natural growth and
inhibited growth, the second, because they suffice for almost all elementary
physical applications.

Students who do not meet complex numbers in calculus could easily bypass
them completely. In subsequent courses that do make use of complex
numbers it is often assumed that the student has “surely” met them
somewhere—in high school or in calculus. Therefore Sec. 10.9 is devoted
to the complex numbers. The following section obtains the equation
¢ = cos 0 + i sin 6, thus giving a major application of series and demon-
strating the connection between the exponential and the trigonometric
functions. 1 encourage the instructor to include these sections, though
they are marked optional, even at the sacrifice of some traditional material.

There is enough material for a three-semester course. Since the number of
class meetings per week ranges from three to five, it is impossible to
give a uniform guide to what should be covered each quarter or semester.
As a rule of thumb one section corresponds to one class meeting, though
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several are longer and some shorter.

There are 121 non-summary sections

in Chapters 0 to 15. Of these, sixteen are marked optional.
The following table describes a maximum (complete) and a minimum

(core only) treatment, with remarks on certain sections.

Most instructors

will steer a course somewhere between the two listed. The instructor’s
manual has a more detailed commentary as well as answers to the even-
numbered exercises, including sketches of solutions to the non-routine

€XEercises.
MAXIMUM MINIMUM
Lectures Comment Lectures Comment
Chapter
0 2 Survey of calculus 0 Left to student to
and text read
1 4 1 Precalculus material,
but mention
Secs. 1.3, 1.4
2 10 Two days on 6 Omit Sec. 2.4
Sec. 2.2; three days
on Sec. 2.4, perhaps
a bit of Appendix F
3 6 6
4 8 Two days on Sec. 4.5 7
5 6 5 Omit Sec. 5.6
6 13 Two days on each of 8 Omit Secs. 6.3 and
Secs. 6.7, 6.8, 6.9 6.10
7 9 6 Omit Secs. 7.3 and
7.9; coalesce Secs.
76,77, 7.8
8 9 7 Omit Sec. 8.7; touch
Sec. 838 lightly
9 7 6 Omit Sec. 9.6
10 13 8 Omit Secs. 10.9 10
10.13
11 6 5 Assume Sec. 11.5
12 9 7 Omit Secs. 12.8, 12.9
13 10 Two days on 7 Omit Secs. 13.5, 13.6
Sec. 13.3
14 8 5 Omit Secs. 14.7, 14.8
15 9 Two days on Sec.15.3 7 Omit Sec. 15.8
Total 129 91
Appendix
A 1 0
B 2 ’ Precalculus material, 0 ’ Precalculus material,
C 1 some to be treated 0} used as reference by
D 2 ’ early in course 0 ) students
E 4 0
F 3 ¢, & continued 0
G 3 A sample of 0
- advanced calculus
Total 16
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Chapter 0 may be left to the student to read. If the class is adequately
prepared, Chap. 1 may be omitted or the last two sections emphasized.
In Chap. 2 there is the choice of omitting Sec. 2.4 on ¢, 0.

Chapter 6 offers a choice in the way logarithms are treated. The approach
in Secs. 6.1, 6.2, and 6.4 assumes the exponential functions as given and that
lim,_o (1 + k)" exists. It grows naturally out of the student’s precalculus
experience and provides an opportunity to review the manipulations of
exponents and logarithms. However, instructors who wish to define the
logarithm as an integral are free to follow Secs. 6.3 and 6.10 and de-emphasize
Secs. 6.1 and 6.2. (If the informal approach in Secs. 6.1, 6.2, and 64 is
followed, most of Chap. 6 can be done before Chap. 5, that is, Secs. 6.1,
6.2, 6.4 to 6.6, 6.8 and 6.9.)

The next choice 1s how much attention will be given the special inte-
gration techniques in Secs. 7.6 to 7.9.

In Chap. 10, after completing the standard topics in series, there are
several optional sections.  Sections 10.9 and 10.10, taken together, introduce
complex numbers and exhibit a major application of series. Section 10.11,
on linear differential equations with constant coeflicients, depends at one
point on Sec. 10.10.

Sections 13.5 and 13.6 present an optional unit, an intuitive treatment
of the Jacobian, its significance as a measure of local magnification, and
its use in the change of variables in an integral.

Only Secs. 14.1, 14.2, 14.3, and 14.6 in Chap. 14 are needed in Chap. 15.

Complete solutions to all odd-numbered exercises and guide quizzes are
available to the student in a manual prepared to accompany this text.

At each stage of this revision two former graduate students at Davis,
Anthony Barcellos and Dean Hickerson, scrutinized every sentence, every
formula, every diagram, every marginal note (adding, incidentally, many of
their own), and every line of type. Harsh taskmasters, both conscientiously
represented instructor and student; their dedication and thoroughness
significantly improved much of the exposition.

The revision also benefits from suggestions I received from colleagues at
Davis, in particular Henry Alder, Carl Carlson, G. Donald Chakerian,
David Mead, Washek Pfeffer, and Evelyn Silvia.

Daniel Drucker of Wayne State University was the main outside critic
during the revision. He combined a meticulous attention to detail with a
sense of broad organization.
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Valuable contributions were made also by Larry Curnett, Bellevue
Community College; Mark Bridger, Northeastern University; Augustus J.
Garver, University of Missouri; David Finkel, Bucknell University; John C.
Higgins, Brigham Young University; James Hurley, University of
Connecticut; Melvin D. Lax, California State University, Long Beach;
Peter A. Lindstrom, Genesee Community College; Jeffrey McLean, Ohio
Northern University; Joel Stemple, CUNY, Queens College; and Lawrence
A. Trivieri, Mohawk Valley Community College.

Several students worked on parts of the text and the accompanying
solutions manual, reviewing manuscript, doing exercises, and checking
answers. For their labors I wish to thank Dana Reneau, Judy Clarke,
Colin Missel, Mark O’Donnell, Karen Thomason, Kevin Zumbrun, and
Ed Bazo.

My appreciation also goes to Shelly Langman, Carol Napier, and Stephen
Wagley at McGraw-Hill for their enthusiastic and skillful support in this
revision. In spite of the little leeway in choice and order of topics granted
any author of a basic text, the publisher has encouraged me to offer fresh
options if they are needed by users of calculus.

One final remark. Special care has been taken to keep errors to a
minimum. Galleys and page proofs received four independent readings.
Each exercise was worked by at least three people; answers in the back
of the book were checked against page proofs. Though it is every author’s
dream to produce the error-free book, no one, to my knowledge, has ever
achieved that aspiration. T would therefore appreciate your calling to my
attention any errors that may still remain.

Sherman K. Stein
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AN OVERVIEW OF
CALCULUS AND

THIS BOOK

0.1

The derivative

Figure 0.1

There are two main concepts in calculus: the derivative and the integral.
Underlying both is the theme of limits. This chapter introduces these
ideas informally, tells where they appear in the text, and offers a glimpse into
their history. The reader may wish to turn back to these pages from time to
time to maintain a broad perspective, which is otherwise too easily lost in
the day-by-day details of definitions, theorems, and applications.

The tangent line to a circle at a given point P can be found as follows.
First draw the radius from the center of the circle to P and then con-
struct the line through P perpendicular to that radius. That line is tangent
to the circle. (See Fig. 0.1.)

But how would we construct the tangent line at a point P on a curve that
is not a circle? For instance, how would we find the tangent line at the
point P on the curve in Fig. 0.2 which is described by the equation y = x2?

¥

Figure 0.2



