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PREFACE

That Hilbert space theory and elementary matrix
theory are intimately assoclated came as & surprise to
me and to many colleagues of my generatlion only after
studying the two subjects separately. This is deplorable:
it took us as wuch time to dlscover for ourselves that
there 13 a conmnection as it toock to learn the two seem-
ingly separate disciplines. I present this little book
in an attempt to remedy the situation. Addressing the
advanced undergraduate or beginning graduate student, I
treat linear transformations on finite dimensional vec-
tor spaces by the methods of more general theories. My
purpose 1s to emphasize the simple geometric notions
common to many parts of mathematics and its applications,
and to do this in a language which gives away the trade
secrets and tells the student what 1s 1n the back of the
minds of people proving theorems about integrel equa-
tions and Banach spaces. The reader does not, however,
have to share my prejudiced motlivation. Except for an
occasional reference to undergraduate mathematics the
book 1s self contained and may be read by anyone who is
trying to get a feeling for the linear problems usually
discussed in courses on "matrix theory" or *higher al-
gebra". The algebraic, coordinate - free, methods do
not lose power and elegance by specialization to a finite
number of dimensions, and are, in my belief, as elemen-
tary as the classical coordinatized treatment.

I originally intended this book to contain a theorem
if and only if an infinite dimensional generalization of
it already exists. Barring a few concessions to the
tempting easiness of some essentially finite dimensional
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II PREFACE

notions and results, I have followed this plan. My em-
phasis, however, is more on method than on results. The
reader may sometimes see some obvious way of shortening
the proofs I give. (He 1s, for example, very likely to
do this in comnection with the representation of a
linear functional by an inner product or the treatment
of direct products of unitary spaces.) The chances are
that the infinite dimensional analog of the shorter
proof 1s either much longer or else non existent.

To supplement the hints in the body of the book con-
cerning the various directions in which a student may
proceed, I have appended a bibliography. This very
short list makes no pretense to completeness; it consists
merely of the books which have helped me the most.

Thelr perusal should give the student an idea of most of
the important extensions of the subjects I treat.

In conclusion I want to express my really sincere
thanks to virtually every mathematician in Princeton.
Most of them hiave read parts of the manuscript, dis-
cussed the project with me, and were very kind in giving
encouragement and criticiam. I am particularly grateful
to two men: John von Neumsnn, who is one of the origi-
nators of the modern spirit and methods which I have .
tried to present and whose teaching was the inspiration
for this book, and J. L. Doob, who read the entire manu-

script and made many valuable suggestions.

Pgul R. Halmos

The Institute for Advanced Study,
Princeton, New Jersey



Chapter
§1.
$2.
§5.
§4.
§5.
$6.
§7.
§8.
§9.
§10.
§11.
§12.
§13.
14,
§15.
§16.
$17.
§$18.
§19.

Chapter
§20.

§21.
§22.
§23.
§2L,
§25.
§26.

TABLE OF CONTENTS

I. SPACES
Definition of vector space . . .
Examples of vector spaces . . .

¢« o

. o e

Comments on notation and terminology . .

Definition of linear dependence

Characterization of linear dependence .
Definition and construction of bases . .

Dimension of a vector space . .
Isomorphism of vector spaces .
Lineayr manifolds c s e s o o &
Calculus of linear manifolds . .
Dimension of a linear menifold .
Conjugate spaces e e e s o o o
Notation for linear functionals

Bases in conjugate spaces . . .

¢ o @

Reflexivity of finite dimensional spaces

Annihilators of linear manifolds
Direct sums e s s s e o s o
Dimension of a direct sum . . .
Conjugate spaces of direct sums

IX. TRANSFORMATIONS

Definitions and examples of linear
formations e o s o % o 4 8 o 0 6 s e
Linear transformations as a vector space
Products of linear transformations
Polynomials in & linear transformation .
Inverse of a linear transformation . . .

Definition of matrices . . . . .

o o o

trans-

s e o

s

Isomorphism between matrices and operators

111

Page

<N \3R NN -

12
14
15

.17

18
20

. 21
. 25
- 25

27

. 29
« 31

« 33

35
36
37
39
LY
46



Iv TABLE OF CONIENTS

Page
§27. Reducibliity « « ¢« ¢ ¢ = + ¢ o ¢« o &« » « « « k8
§28. Complete reducibility and direct sums of
transfformations . ¢« « ¢ ¢ « o & o o .

§29. Projections e s o e s e 4 e s s s s s e s 51
§30. Algebraeic combinations of projections . . . 53

§31. Application to reducibility and

Involutions . . + ¢ ¢ ¢« & ¢ o ¢ o ¢ & o« o« « 56
§32. Adjoint operators . . . . . . . . . . ¢ . . 58
60

§33. Adjoint of a projection . . . . . . . . . .
§34, Change of basls . . . . . s e s s s e o o 63
§35. Linear transformations under a change

of basls e o o 6 5 e s & e c o s a4 o s a
§36. Range and rnull space of & linear

transformation « « o ¢ 4 ¢ ¢« 4 v e 4 . s . . 69
§37. Rank and nuility . . . . . . . . . « . . . . 71
§38. Linear transformations of rank one . . . . . 7k
§39. Determinants and the spectrel terminology. . 77
§40. Multiplicities; the trace of a linear

transformation . . . . . . 4+ 4+ ¢ 4+ 4+ . . . 80
§47. Super diagonal form . . . «.v ¢« ¢ + o . . . 83

Chapter III. ORTHOGONALITY
§42. Concept of an immer product . . « » . . . . 86
§43. Gemeralization to complex spaces . . . . . . 88
§44. Formal definition of unitary space . . . . . 90
§45. Applications of Schwarz's inequality . . . . 91
§46. Orthogonality €+ e s a4 4 e s s s e s . . 9%
§47. Characterizations of completeness . . . . . 95
§48. Existence of complete orthonormal sets . . . 97
§49. Projection theorem e e e s e e o s e s = s 99
§50. Representation of linear functionals . . . .100
§51. Relation hetween parantheses and brackets .102

§52. Comparison of the two "natural® iso-
morphisms from T to TW** , , . . . . . .10k
§53. Linear transformations on a unitary space .105
§54. Hormitian transformations e o o « s o o 107

66



TABLE OF CONTENTS

§55.

§56.
§57.
§58.

§59.
§60.
§61.
§62.

§63.

$64,
§65.
§66.
§67.
§68.
§69.
§70.
§71.
§72.
§73.
§74 .
§75.
§76.
§77.

Aligebraic combinations of Hermltian
transformations . . . . + ¢ ¢ ¢ o + + o .
Non negative trensformations . . . . . . .
Perpendicular projections . . . . . . . .
Algebraic combinations of perpendicular
pro jections e o o s s e o e « o « o s a
Unitary transformations . ., . . . . . . .
Change of orthogonal basis . . . . . . . .
Cayley transform “ e e e s e e e e e e
Proper values of Hermitian and unitary
transformations * e e s 6 s e st s s e
Spectral theorem for Hermitian trans-
formations ® e s+ s 4 e + s s s s s s e @
Normal transformations " . . v + ¢ o o .
Functions of normal transformations . . .
Properties of non negative transformations
Polar decomposition . . . + ¢ ¢ v & o o o
Problems of commutativity . ., . . . . .
Hermitian transformations of rank one ., .
Convergence of vectors e e 6 e e s e e s
Bound of a linear transformetion o s e e
Expressions for the bound . . . . . . . .
Bounds of & Hermitian transformation . . .
Minimax principle e e o 8 4 e 4 e v e o
Convergence of linear transformations . .

Ergodic thscorem for unitary trensformations.

Power seriles P e ¢ s s e 8 s e s = o o

Appendix I. THE CLASSICAL CANONICAL FORM . . .

Appendix II. DIRECT PRODUCTS . ., . . . . . . .

Appendix III. HILBERT SPACE

Bibl 1081’8phy ¢ @ e o e s
Iist of Notations ., ., . . . .
Index of Definitions o v e

Page

109
111
112

115
17
119
121

124

126
130
134
135
138
140
142
14l
145
147
149
151
152
154
155

159
170
183
189
190
193



Chepter I

SPACES

§1.

- In what follows we shall have occasion to use dif-
ferent classes of numbers (such as the class of all real
numbers or the class of all complex numbers). Because
we don't want, at this early stage, to commit ocurselves
to any specific class we shall adopt the dodge of refer-
ring to numbers as scalars. The reader will nct lose
anything essential if he comsistently interprets scalars
as real numbers or as complex numbers: in the examples
that we shall give both classes will occur.

DEFINITION. A vector space, B, is a
set of elements x, ¥y, z, etc., called vectors,
satisfying the following axioms.

A.

To every pair x and y, of vectors in
B  there corresponds a vector z, called the
sumof x and Yy, 2z = x+y, in such a way that

(1) addition is commtative, x+y = y+x;

(2) addition 1s associative, x+(y+z) =

(x+y) + 23

(3) there exists in B a unique vector,
0, (called the origin) such that for all x in
B , x40 = x; and

() to every x in T there corresponds
& unique vector, denoted by -x, with the proper-

1



2 I. SPACES

ty x + (-x) = 0,
B.

To every peir, o and x, where « is a
scalar and x 1s a vector in B, there cor-
respornds a vector y 1in B, called the pro-
duct of o and X, ¥y = «X, such that

(1) multiplication is distributive with
respect to vector addition, «a(x+y) = ax +ay;

{2) multiplication 1s distributive with
respect to scalar addition, (a+@x;= ax +fx

(3) multiplication 1s associative,
a(fx) = («f)x; and

(4) Ox =0, 1X = x.

(These axioms are not logically independent: they
are morely a convenlent characterization of the objects
we wish to study.) According as scalars are interpreted
as real or complex numbers we shall refer to real or com-
plex vector spaces.

§2. EXAMPLES OF VECTOR SPACES

Before discussing the implications of these axioms
we give some examples. We shall refer to these examples
over and over again and we shall use the notation estab-
lished here throughout the rest of our work.

(1) Let (51 be the set of all complex numbers; 1if
we interpret x+y and ax as ordinary complex numerical
addition and multiplication, € 1 becomes a complex vector
space.

(2) let TP Dbe the set of all polynomials with com-
Plex coefficients in a real variable t. (There is no
deep reason for this arbitrary choice: it is merely a
matter of convenlience for the purpose of giving examples
later). To meke P into a complex vector space we in-
terpret addition and scalar multiplication as the ordina-
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ry addition of two polynomials and multiplication of a
polynomial by a complex number, respectively; the origin
in P 1is the polynomial identically zero.

Example (1) is too simple and example (2) too comp-
licated to be typical of the main contents of this book.
We give now another example of complex vector spaces
which (as we shall see later) is general enough for all

our purposes.
(3) let ¢ , n=1, 2, ..., be the set of all n-

tuples of complex numbers, x = { f. ..., In}; if y =
{ Nyseees nnl we write, by definition,
X+y = 4,4 n.,..0, Lo+ nn!,
&X = ¥°‘21""'°‘En”
0= j{0,...,0]
~x = [-€ ..., -&l.

It 1s easy to verify that all parts of our two
axioms (A) and (B), §', are satisfied, so that ¢, is a
complex vector space; it 1s usually called n-dimensional
complex Euclidezn space.

(¥) For any positive integer n let B, be the’
set of all polynomials (with the same restrictions as in
(2)) of degree { n-1, together with the polynomial
icentically zero. (In the usual discussion of degree
the degree of this polynomial 1is not defined, sc that
we cannot say that it has degree { n-1.) With the
same interpretation of the linear operations (addition
and scalar multiplication) as in (2), p n 1s a complex

vector space.
(2} A close relative of ¢, 1s the set R, of all

n-tuples of real numbers, x = | 51,..., fnf. With the
same formal definitions of addition and scalar miltipli-
cation as for €,, excepting that we consider only real
scalars o , the space R,» the ordinary or real n-dimen-
sional Euclidean space, is a real vector space.




4 I. SPACES

§3. COMMENTS ON NOTATION AND TERMINOLOGY

A few comments on our axioms and notation. Those
familiar with algebraic terminology will have recognized
the axioms (A), §1, as the defining conditions of an
abellan (commutative) group; the axioms (B) express the
fact that the group admits scalars as operators. We use
the "scalar" terminology to emphasize the fact that we
are not even necessarily dealing with real or complex
numbers. Ninety percent of the theory remains valid if
we Iinterpret scalars as elements of any field. If
scalars are elements of a ring a vector space is some-
times called a modul.

Special real vector spaces (namely Rn) are famil-
iar in geometry. There seems at this stage to be no ex-
cuse for the apparently uninteresting insistence on com-
plex numbers. We hope that reader is willing to take it
eon faith that we shall have to make use of deep proper-
tles of complex numbers later, (conjugation, algebraic
closure), and that in both the applications of vector
spaces to modern (quantum mechanical) physics and in the
mathematical generalization of our results to Hilbert
space, complex numbers play an important role. Their one
great disadvantage is the difficulty of drawing victures:
the ordinary picture (Argand diagram) of ¢, 1is in-
distinguishable from that of Ra, and a graphic repre-
sentation of 0.2 seems to be out of human reach. On
occasions when we have to use pictorial language we
shall therefore use the terminology of R, 1n Gn,
and speak of (52, for example, as a plane,

Finally we comment on notation. We observe that the
symbol 0 has been used in two meanings: once as a
mmber and once as & vector. To make the situation worse
we shall later, when we introduce linear functionals and
linear transformations, give it still other meanings.
Fortunately the relation between the various interpreta-
tions of 0 1s such that after this word of warning no
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confuslon should arise from this practice. Another no-
tationally happy circumstance is that -x (defined in
§1, (A)(b4)) and (-1)x are the same thing. This is true

since
X+ (-1)x = 1x + (-1)x = (1 + (-1))x = Ox = O.

§4. DEFINITION OF LINEAR DEPENDENCE

. Now that we have described the spaces we shall work
with we must specify the relations among the elements of
theae spaces which will be of interest to us. Vector
spaces are used to study linear problems: the general
form of a linear relation is described in the following

definition.

DEFINITION. A finite set of vectors,
Xys eees Xy is linearly dependent if there
exlst scalars «,, ..., «» not all zero,
such that
Zictixis Xy Xy 4 oeee 4O X = 0.
If, on the other hand, Zi «y Xy = 0 implies
that @y = coe = a =0, the vectors

x cess X, are dinearly independent.

Linear dependence or independence are properties of
8sets of vectors; it 1s customary however to apply these
adjectives to vectors themselves and thus we shall some-
times say "a set of linearly independent vectors"™ instead
of "a linearly independent set of vectors". It will be
canvenlent also to speak of the linear dependence or in-
dependence of a not necessarily finite set, X , of vec-
tors. We shall say that ¥ 1s linearly independent if
every finite subset of X 1s such; otherwise X 1s
linearly dependent. o '

To gain insight into the meaning of linear depend-
ence let us study the examples of vector spaces that we

1’



6 I. SPACES

already have.
(1) If x and y are any two vectors in (‘.1,

then x and y form a linearly dependent set, If x
=y = 0 this is trivial; if not we have, for example,
the relation yx + (~x)y = 0. Since it is clear that
'any set containing & lirearly dependent subset 1s itself
linearly dependent, this shows that any set containing
more than one element i3 a linearly dependent set.

(2) More Interesting 1s the sltuation in the space
PB. The vectors x =x(t) =1 -t, y=y(t) = t(1 ~t)
and 2z = z(t) =1-t%are, for example, linearly dependent,
since x +y - z = 0, However the infinite set of
vectors Xgr Xy Xy e defined by

x (L) = 1, x,(£) = t, x,(t) = t3, x5(t) = t3, ...,
is a8 linearly independent set, for if we had any relation
of the form

“oxo + oK, 4+ e tapX, = o,

then we should have a polynomial relation

2 n
°‘o +c:1t +oz2t 4 eoe +oznt = 0,

whence Xy ™ Oy =™ oor =g, =0

(3) As we mentioned before, the spaces ¢ n are
the prototype of what we want to study: 1let us examine,
for example, the cagse n = 3., To those famlilisr with
higher dimensional geometry the notion of linear depend-
ence in this space (or, more properly speaking, in 1its
real analog "3) has a concrete geometric meaning which
we shall only mention., In geometrical language: two
vectors are linearly dependent if and only if they are
collinear with the origin, and three vectors are linearly
dependent if and only if they are coplanar with the ori-
gin. (If one thinks of a vector not as a point in a
space but as an arrow pointing from the origin to some
given point, the preceding sentence should be medified
by crossing out the phrase “with the origin® both times
that it occurs). We shall presently introduce the notion
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of linear manifolds (or vector subspaces) in & vector

space and use the geometrical language thereby suggested.
For a concrete example consider the vectors x =

{1, o, ol, y= fo, 1, of z = fo, 0, 1}, and u= {1, 1,14

These four vectors form a linearly dependent set, since

X +y+2-u=0; 1t 1s easy to verify however that any

thres of these vectors form a linearly independent set.

§5. CHARACTERIZATION OF LINEAR DEPENDENCE

Returning to the general considerations we shall
say, whenever x = & X, + c¢c 4+ x , that x 1is a
linear combination of Xys evey X5 We shall use without
any further explanstion all the simple granmstical impli-
cations of our terminology. Thus we shall say, in case
‘X 13 & linear combination of Xis eoes Xp» that x 1s
linearly dependent on Xys eves Xp; We shall leave to the
reader the proof of the fact that if Xis sesy X, are
linearly independent then x 18 a linear combination of
them 1f and only if the vectors x, Xys ++es X, Aare
linearly dependent.

The fundamental theorem concerning linear dependence
1s the following.

THEOREM. The set of non zero vectors,
Xys eeey Xy is linearly dependent if and only
if some x,, 2 { k { n, 1a & linear combination
of the preceding ones.

PROOF. Let us suppose that the set Xy +oes X 18
linearly dependent and let k be the first integer be-
tween 2 and n for which Xys oo X is linearly de-
pendent. (If worse comes to worast the hypothesis of the
theorem assures us that k = n will do). Then

ﬂ1x1 4+ eece +akxk- 0
for a suitable set of of's; moreover, whatever the «'s,
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o = 0 1s impossible, for then we should have a linear
dependence relation among Xys cees Xpgo contrary to the
definition of k. Hence

xk -[.El] x 4+ osee 4 {-ak-‘l ] xk

. oy 1 1 ey ~1?

as was to be proved. This proves the necessity of our
condition; sufficlency is clear since, as we remarked be-

fore, any set containing a linearly dependent set 1is
itself such.

§6. DEFINITION AND CONSTRUCTION OF BASES

DEFINITION. A (linear) basis (or a
coordinate system) in a vector space B 1s
a set X of linearly independent vectors
such that every vector in T 1is a linear
combination of elements of X . A vector
space T 1s finite dimensional 1f it has a
finite basis.

Except for the occasional consideration of examples
we shall restrict our attention, throughout this book,
to-finite dimensional vector spaces.

For examples of bases and finite and non finite di-
mensional spaces we turn again to the spaces Gn and
P . In P the set x, =x (t)=t", n=o0, 1, 2,...
is ' a basis: every polynomial is, by definition, a lin-
ear combination of a finite mmber of X, Moreover P
has no finite basis, for given any finite set of poly-
nomisls we may find a polynomisl of higher degree than
any of them: this latter polynomial is obviously not a
linear combination of the former ones.

An example of a basis in Gn is the set of vec-
tors X4 i1=1, ..., n, defined by the condition that
the j-th coordinate of Xy is 61 . (Here we use for
the firat time the popular Kronecker ¢ ; it is defined
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by 64;=1 1f 1= §, and 613-0313“1). Thus
we assert that in (63 the vectors X, = {t, o, o}, X, =
fo, 1, of, ande = { 0, 0, 1] are & basis. We have seen

before that they are linearly independent; the formmla

x=1£, 52, fjl - £ x, + £, x, + 55 Xy
proves that every x in (£3 1s a linear combination of
them.

In a general finite dimensional vector space T,
with basis Xys eeey X, WE know that every x may be
written in the fomm

x= 2 K oxygs
we assert that the §'s are uniquely determined by x.
The proof of this assertion i1s an argument often used in

the theory of linear dependence. If we had x =
p 4 My Xy, then we should have, by subtraction,

Z 1( 51“ "li)xi = 0,
Since the x's are linearly independent, this implies
that §,- ng =0 for 1=1, ..., n: in other words the
n's are the same as the §s.

THEOREM, If B is a finite dimensional
vector space and ¥,, ..., ¥ "is any set of

linearly independent vectors in 1B, then,
unless the y's already form a basls, we can

find vectors Yme1? o> ym+p so that the
totality of y's, Fis Jor vees Iyr Ipers o-o>
ym_‘_p, forms a basis. 1In other words: every
linearly independent set can be extended to a
basis,

PROCF. Since D 1s finite dimensional it has a
finite basis, say Xqs eees Xpe We consider the set ©
of vectors :

71) 800y ym: x,: ceey xn:



