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Preface

Operational research is truly a post-war science. Since the formula-
tion of the simplex method by G. Dantzig in 1946, mathematical
programming, both linear and non-linear, has been applied to every
aspect of engineering. It deals with the formulation, scientificly, of the
tactics for achieving a certain strategy. The main object of this book is
to present a reasonably comprehensive account of the various establis-
hed methods in mathematical programming in a manner acceptable to
the engineer. Ideas are familiarised with the aid of simple examples
which are solved numerically as well as graphically and the various
methods of mathematical optimisation are then used in the design
of structures. This is achieved by introducing a large number of
-examples.

The value ,of optlmlsatlon becomes more apparent with larger
structures which require the use of recent advances in matrix and
computer methods. For this reason, the entire book is presented using
matrix methods. The concept of design is fundamentally different from
that of analysxs and for this reason the various matrix methods are
presented in a form more suitable to the design of structures as
opposed to their analysis. A design approach also requires the formula-
tion of theorems which are basically design tools and for this reason
a number of recently developed design theorems are included, together
with examples of their application.

Chapter 1 gives a brief introduction to the varidus existing design
methods. Commencing with the design of simple beams. Methods of
designing more compléx structures are then outlined covering the use
of elastic, plastic and elasto-plastic theorems. In contrast to these
conventional methods, a detailed account of a more direct method.
of design is given, followed by a discussion of the wider aspects invol-
ved in structural design.

Chapter 2 is devoted to mathematical optimisation. This starts with
a detailed account of lineat programming and the simplex method and
concludes with a description of the gradient method. The use of the
sxmplex method in solving discrete problems by integer programmmg
is also covered together with some examples. The various methods
of non-linear programming, such as the cuttinq plane method, the



piecewise linearisation method, as well as geometric and dynamic
programming are also introduced in this chapter.

Chapter 3 covers the optimum design of structures using the matrix
force method. The primary objects of design, such as minimum weight
as opposed to miimum cost, are discussed. This is followed by the
design of pin jointed and rigidly jointed structures which are either
statically ‘determinate or hyperstatic. An example of design by geo-
‘metric programming is also includent in this Chapter. Chapter 4 deals
with the design problem using the matrix displacement method. Cost
.functions, which are not directly related to the weight of the structure
are given together with examples. This chapter also discusses the use
of the cutting plane method for solving design examples.

Chapter 5 deals with special aspects of design.such as the minimum
weight design using plastic theory. Such problems as the design for
proportional deflections, for discrete sections, for least mean square
deflections as well as design by dynamic programming, integer
programming and piecewise linearisation are dealt with in this chapter.

The last chapter uses the new theorems of structural variations when
designing structures with variable shape. The theorems themselves are
first presented and proved and examples are solved toxshow their use
in the analysis of changing structures. The remainder of the chapter is
devoted to the use of the gradient methods for the selection of a parti-
cular shape of a structure which best serves the design purpose.

Throughout the book the emphasis has been placed on safety and
economy as design requirements. When considering the safety of a
structure both stress and deflection limitations are taken into account
and particular attention is paid to design problems where these require-
ments interact. Design exercises with answers, are given at the-end of
each chapter. , ‘

The author wishes to thank members of staff ‘and research students
who worked with him on this book or contributed towards the correc-
tion of the text. In particular, he wishes to thank Dr. D. W. C. Elliott,
of Husband & Co., who carried out research on the subject matter
presented in chapter 6. Thanks are due to Mr. P. C. L. Croxton and
- Dr. D. Anderson for reading the text and checking the examples. The
author particularly wishes to thank Miss C. Horton and Miss P. Sage
for the preparation of the manuscript and the drawings. '

K.T. Maip



Units .
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The book is written in ST unifs. If imperial units are réquired the following
conversion factors may be used for calculating the figures used in the text.

SI Imperial
1 mm 0.0394 in
1m 3.2808 it
1N 0.2248 Ibf
1 kN/m? 20.89 ibf/ft2
1 N/mm? 0.648 tonf/in?
1 kKN/m? 9.32X 1073 tonf/fi2
1 kNm 8.85X 103 Ibf.in
1 kNm 3.95 tonf.in
1 kNm 736 1bf.ft
1 kNm 0.329 tonf.ft
9.96352 kN 1 tonf
9.81 N = 1 kgf

Modulus of elasticity for steel = ! 207 kN/mm? = 30X108 Ibf/in%



Notation

Symbols are defined when they appear for the first time in the text. Each one
is redefined when its meaning changes. Some symbols are used throughout
the text with the following meahing:

A,a Area

A Displacement transformation matrix

[a;] Row i of matrix A

B Load transformation matrix

< Cost coeflicients in the objective function
) Direction vector with a typical elément d;
E Modulus of elasticity

¥ Member flexibility matrix

G Total number of groups in a structure

H Horzontal toree

1 Second moment of aread

) Fotal number of joints in astructure

K The overall stittness matrix

k he saffaess matrix of a member

L The load vector or matrix

L, Paternal load on a basic statically determinate structure
L, I'he vector of forees in redundant members
11 Span, length

M Moment .

M, tull plastic hinge moment

N Number of members

P Member force vector or matrix

S The stress matrix

U Strain energy

8] Member distortion vector

\Y Vertical force | '

w Load or weight

X Joint disp]acefnent vector

y I/z, distance of a point from the neutral

Axis
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6,4

Value of the objective function
Section modulus

Stress

Gradient vector

Product of N variables = x; x5 x5 ..

Permissible deflections
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Chapter 1

An Outline of existing Design Methods

1.1. Design by repeated analyses

The problem of design often appears to be that of repeated analyses.
In the case of statically determinate structures, designed to satisfy a
given set of permissible stresses, it may be sufficient to carry out one
analysis. This is because the forces in the members of these structures
are independent of their cross-sectional properties. these forces
are determined, by equations of static equilibrium, the cross-sectional
propérties are selected so that the stresses do not exceed their permis-
sible values. Often the designer selects these sections so that the weight
of the structure is minimum. )

In every design method the design criteria are often selected to suit
the theory employed in the analysis: In the case of design by an elastic
theory, for instance, a criterion is that the elastic working stresses
should not exceed certain permissible values o, laid down in appro-
priate specifications such as BS 449. Design practice then ensures
that the resulting structure is safe. In the case of elastic theory a factor
of safety f is applied against yielding anywhere in the structure.

For example, consider the design of. a’ simply Supported beam of
span 1, carrying a uniformly distributed load w per unit length. The
maximum ‘bending moment, at the midspan of this beam, can be
calculated by statics as w®/8. From the theory of simple elastic bending
we have

1
or M,I=o¢ @D

Ml = afy }
where M is the moment at a point in the beam, 7 is the second moment
of area of the cross section, y is the distance of the point from:
neutral axis and ¢ is the stress at the pomL In the case of the simply
supported beam in order to safeguard against yielding, it is necessary

1



2 AN OUTLINE OF EXISTING DESIGN METHODS

to have
Jwly[8l < a, (1.2)

where o, is the guaranteed yield stress of the material. It is therefore
necessary to select a section that has a modulus z, which is the ratio
Iy, sufficiently large to satisfy the inequality in equation 1.2. ,
The lightest section may be acceptable but the design criteria often

include many other items that a designer must take into consideration. -
For instance, it may be required, for architectural reasons, to select
a section with the Jeast depth. Furthermore, in many cases the deflec-
tion of the beam is restricted to a certain ratio of its span. For example,
the BS 449 limits the midspan deflection of this beam to //360. The
selected section therefore has to satisfy this deflection requirement
which is given by ,
Swi*/384ET = {360 (1.3)

It is also necessary to check that the shear stress in the beam does
not exceed the permissible values also given in standard specifications.
Strictly speaking, the above design is not complete because the self
weight of the beam was not included with the load w. It is therefore
necessary to add the weight per unit length of the gelected section to
the load w and repeat the procedure. : . ‘

Historically, engineers designed statically determinate structures
before hyperstatic ones. This is perhaps why they decided to design
the latter als6 by analysing them first. The analysis of hyperstatic struc-
tures, however, requires a knowledge of the member properties such as
the area or the second moment of area of the sections. Unless these
are known, the analysis is unreliable. The oldest, and perhaps the
crudest approach, is to assume these sectional properties, analyse the
structure and use the results to select a new set of properties. Repeating
this cycle of operations often leads to a feasible design. This method
however suffers from the fact that it confuses the theory of design by
avoiding it altogether and carrying out a number of analyses instead.
For realistic hyperstatic structures, this approach is unnecessarily
tedious and involves the solution of a large number of simultaneous
equations. Furthermore the final set of sections depends to a great
extent upon the initial erroneous set. For this reason they are not
necessarily the best set and are either heavy or costly to construct.
The weakness of this approach becomes apparent when it is realised
that most design offices are often short of time and cannot try a
number of alternatives to select the most suitable. .

These factors played a part in initiating the search for other, much
quicker, methods. One outcome was to rely on approximations, thus
aggravating the errors involved. One such approximation, which is
also commonly practised, is to cast aside the hyperstatic structure and



AN OUTLINE OF EXISTING DESIGN METHODS 3

replace it by a statically determinate one that has the same shape.
This is achieved by inserting a sufficient number of imaginary hinges
at points of counterflexures, which are themselves assumed by the
designer. A sufficient number of these hinges render the structure
statically determinate and thus it can be analysed by the simple equa-
~ tions of equilibrium. Triangular rigid structures are often’ treated
similarly. The rigid joints are replaced by pins and the resulting struc-
ture is then analysed for the member forces.

A second approach assumes that at collapse, the material of the,
structure yields at a number of sections so that the structure may
behave as a mechanism. This approach was developed mainly at
Cambridge by Baker et al.! and is known as the rigid-plastic theory.
Unlike the elastic theory, which is concerned with the behaviour of the
structure at the working condition, the plastic theory considers the
state of failure and, from this, it derives the sections required to sustain
the working loads. At the rigid-plastic collapse the structure is also
statically determinate. There are a sufficient number of points in the
structure where plastic hinges are developed. Each hinge can withstand
a constant amount of bending moment known as the ‘plastic hinge
moment’ of*the section which can be calculated from the dimensions
of the section and the yield stress of the material. Once again, because
it is assumed that the collapsing structure is statically determinate, it is
possible to use the equations of equilibrium to evaluate the collapse
load. A load factor A is then applied to the working load of the struc-
ture and provided that the result is less than the collapse load, it is
considered that the structure is safe. This method is now used to
design a portal frame.

1.2 Design of a portal by the plastic theory

Consider the frame of Figure 1.1 which is subject to a working vertical
load 2W at the midspan E of the beam AC and a horizontal load
W at the beam level. This frame may be converted into a mechanism
in three different ways. To obtain these, it is assumed that the full
plastic moment of the beam is M, and that of the columns is 1.5 M,. -
- A beam mechanism develops with three hinges, one at E under the
vertical load and one at each end of the beam as shown in Figure 1.1b.
Because the columns are made stronger than the beam, the plastic
hinges tend to develop at the ends of the beam before those at the ends
of the columns. :
“The équation of vertical equilibrium can be used to derive a virtual -
-work equation for the collapse mechanism. As the structure deflects
at factored loads 2Aw acting vertically and Aw horizontally, the rota-
tion of the plastic hinges at B and C, at a given instant, is 6 while that

2



4 AN OUTLINE OF EXISTING DESIGN METHODS

of the hinge at E is 20. The load 24w moves down by an amount 2/0
and the work done by this load is therefore 4Awl0. The horizontal load
does no work and is not shown in Figure 1.1b. The work done by the

_2aW
20w
AW—1g £ Mp C ] 53 =t
| 1

5Mmp 15Mp| 5S¢

rA ] Drir ———‘L A Drir

e

(a) ) ()

. (€) (d)
Figure 1.1 Various mechanisms of a portal .
: {a) Frame and loading
(b) Beam mechanism
{c) Sway mechanism
(d) Combined mechanism

vertical external load is converted into strain energy and consumed
by the plastic hinges as they rotate. For instance the hinge at B which is
subject to a constant bending moment M, rotates by an amount ]
and hence consumes M, 0 of the available energy. Similarly for the
other hinges. Equating the work done by the load to the total energy
required by the hinges, we obtain the vu'tual work equation for the
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collapse mechanism, thus .
' M0+ M,0+2M,0 = 4Awl6
Hence
’ M, = Awl (1.4)

On the other hand a sway mechanism develops in this frame with
four hinges at 4, D, B and C as shown in Figure 1.1c. The virtual
work equation for this collapse mechanism can be derived similarly as

3MyH+2M,6 = SHwlb

giving
M, = iwl (1.5

Finally a combined mechanism can develop with two hinges at
A and D and two other hinges at E and C in the beam. This is shown
in Figure 1.1d, for which the virtual work equation is:

, 3M,0+4M,0 = SAwl0+4Awlo
Thus
M, = 9wl[1 (1.6)

Comparing equations 1.4, 1.5 and 1.6, it is noticed that the largest
M, is required by equation 1.6, for the combined mechanism. To
prevent collapse it is therefore necessary to select a section for the
beam with a plastic hinge moment which is at least as large as that
given by equation 1.6. Accordingly the value of the plastic hinge
moment for the columns must be 1.5 times larger.

The weakness of the plastic theory lies in the fact that for most
frames, the axial loads in the members are high and because of in-
stability effects, these frames collapse before the development of a
mechanism. Therefore at collapse the structure is hyperstatic. Another
weakness of the plastic theory is that it assumés that the structure does
not deflect until collapse. Because of this assumption, the theory does
not consider the deflected shape of the structure in deriving the equa-
tions of equilibrium. Furthermore it does not impose any limit on the
permissible deflections and thus does not include deflection.require-
ments in the design criteria.

1.3 The elastic-plastic design

According to the elastic-plastic theory, the hinges in a structure do not
develop all at once. For this reason, while a load factor is adopted
against the collapse of the structure, the load factor at which individual
hinges develop is different from one hinge to another. For structures

2¢



6 AN OUTLINE OF EXISTING DESIGN METHODS

where member axial forces and/or joint deflections are high, an elastic-
plastic approach becomes necessary, not only to predict the failure
load factor A, but also to investigate exactly where, during the process
of loading, the plastic hinges develop. i :

Like any other theory, the elastic-plastic theory requires its own
design criteria and design procedure. This theory considers a frame
satisfactory if elastic-plastic analyses under proportional loading reveal
that none of the following design criteria are violated:

(1) Under combined dead load, super load and wind load from either
side, the frame should not collapse below the permissible load
factor A;. This is usually taken as 1.4. -

(2) Under dead load and vertical superload, the frame should not
collapse below the permissible load factor As, which is usually
taken as 1.75.

(3) No pilastic hinge should develop in a beam below the load factor
of unity and the frame should be entirely elastic under the work-
ing load.

(4) No plastic hinge should develop in a column below the permis-
sible load factor A; under combined loading, or A5 under vertical
loading.

A detailed description of the elastic-plastic method of design is given
by Majid2. It is sufficient therefore to give a summary of the design
procedure which is as follows: :

(i) A set of lower bound sections is selected for the members;

(1i) Thé frame is then analysed elastic-plastically, under all the
different combined load cases, up to collapse. From these analyses
the load factor at which each hinge develops is recorded ‘together
with other particulars such as the axial loads in the members;

(i) From this information, the members are redesigned to satisfy
criteria (3) and (4); '

(iv) Steps (i) to (iii) are repeated until design criteria (1), (3) and
(4) are satisfied with combined loading; L

(v) The frame is then analysed under vertical loading to check
whether criterion (2) is satisfied and final alterations are made if

. required.

The elastic-plastic design is more accurate than the plastic method
because it considers the behaviour of the frame at every stage of
loading up to and including the pre-mechanism collapse. During the
various stages of the analysis the effects of both plasticity and in-
stability are considered. It is clear, however, that the method requires
a computer to carry out the elastic-plastic analysis. This method is
also one of repeated analyses of a structure starting with an assumed
lower bound set of sections. '
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1.4. A direct method of design

Every design method described so far has been one of analysis and
not design in its strictest sense. These methods are either approximate
because they consider equilibrium only, or lengthy because of carrying
out repeated analyses of the structure. The methods all yield a set of
feasible sections but none of them can claim to give the best set of
sections. For example in the case of the rigid-plastic approach it was
assumed, in the example of the portal frame, that the value of M) for
the columns was 1.5 times that for the beam. The relative strength
of these members could have been chosen in an infinite number of other
ways but only one set would have given the most suitable design in
every sense. ‘ '

A direct method for the design of hyperstatic structures was develo-
ped by Pippard® as early as 1922. This method should be considered
as one of exceptional importance not only because it is simple and
requires no solution of simultaneous equations, but also because it
demonstrates that the problem of design is different from that of
repeated analysis. Furthermore it leaves the designer as the policy
maker with a choice of the most suitable design from a large number
of alternatives, all of which are obtained easily. This method is now

Consider a general hyperstatic pin jointéd structure which is subject
to a set of external forces Ly = {ﬂle ... Ly} where the suffix b
refers to the basic statically determinate part of the structure. Altoget-
her there are m loading points. Let the forces in the redundant members
be L, = {RiR; ... R,}, where there are n redundant forces R. The
suffix r refers to the redundant members. The force p; in any member i
is given by

p. = aLi+bLa+ ... +mLy+aR1+PRs+ ... +VRa a.n

.ot for the whole structure, using matrix notations

P = B)L,+B,L, = [B,B,] {L:L.} (1.8)

where a, b, n, a, B, ... v are numerical constants depending upon the

geometry of the structure and can be calculated by joint resolution,
ie. by equilibrium. The matrix P contains all the member forces.
including the redundants and matrix B = [B;B,] is the force trans-
formation matrix relating the member forces on the one hand to the
external ‘loads and the redundant forces on the other. Pippard did
not use matrix notations in proposing the method. However, because
the rest of this book uses computer orientated matrix methods, it is
considered suitable to introduce matrices here and present the method
using’ both notations. The matrices used here will be derived and

described in detail in Chapter 3. The strain energy of the structure U is



