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The Production and Stability of Converging Shock Waves*

RoBERT W. PEn_]wf AND ARTHUR KANTROWITZ
Cornell University, Ithaca, New York

(Received November 28, 1950)

Converging shock waves offer interesting possibilities of attain-
ing very highzemperatures and pressures. A theoretical treatment
by G. Guderley which we have confirmed and extended by the
method of characteristics indicated that the strength of a strong
converging cylindrica! or spherical shock varies inversely with a
power (0.396 for v=1.4) of the surface area of the wave, thus be-
coming very great close to the center of convergence. The experi-
mental production of high temperatures and pressures by means of
these converging shocks depends on their “stability” of form. A
converging wave is said to be stable if it approaches perfect
cylindrical or spherical shape, thus damping out random dis-
turbances as it propagates. The experimental work of L. G. Smith
on Mach reflection is applied to show that these converging waves
are stable for the shock range (M <2.4) covered by his experi-

INTRODUCTION

E were first attracted to the study of converging
shock waves by the extremely high pressures

and temperatures, which apparently could be achieved
by their use. The problem of a converging strong
cylindrical or spherical shock wave has been analyzed
by Guderley.! He assumes that a converging shock will
. approach the center according to some power law, so
that if r is the shock radius ¢ seconds before the shock

* Largely supported by the ONR. This gaper is based on a
thesis submittedpgo the Graduate School of Cornell University in
partial fulfillment of the requirements for the Ph.D. degree. A
preliminary version of this work was reported at the Charlottes-
ville, Virginia, meeting of the Fluid Dynamics Division, American
?h);gﬁl Society on December 28, 1950 [Phys. Rev. 77, 572
19 .

t Now Research Engineer, DuPont Experimental Station,
Wilmington, Delaware.

! G, Guderley, Luftfahri-forsch. 19, Nos, 9, 302 (1942),

ments. Smith’s work and the theoretical work of Lighthill indicate
that the stability decreases greatly at high Mach numbers.

The simplest experimental method of achieving a cylindrical
converging shock is by the use of a shock tube with & converging
channel. This, however, results in the hottest region of the gas
being in close thermal contact with the cold walls, An axially
symmetric shock tube has been designed and constructed which
produces a complete converging cylindrical shock rather than just
a sector and in which the region of convergence is comparatively
well isolated thermally from the walls. It has been found possible
to converge a moderate strength shock wave (M = 1.7) sufficiently
to produce considerable luminosity at the center of convergence.
Schlieren photographs are presented showing various phases of
the formation and stability of these converging waves.

reaches the center, then he assumes r=a*. He then re-
duces the equations of motion to first order, utilizing the
symmetry properties of the problem. The first-order
equation is integrated numerically. From the numerical
integration it-is found that the external boundary con-
ditions are satisfied only for spherical shocks if #=0.717
and for cylindrical shocks if #=0.834. Knowing this
value of n, the pressure and temperature behind the
shock are readily computed.

An alternative procedure is to solve the problem by
the method of characteristics. A solution by the methed -
of characteristics, the solution of Guderley, and a solu-
tion according to acoustic theory, all for the case of
spherical shock waves which start from r=1 with Mach
number M =1.1 (ratio of shock velocity to velocity of
sound ‘in the undisturbed fluid ahead of the shock),
are presented in Fig. 1, Tt will be noted, 23 might be
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Fic. 1. Comparison between sonic theory, Guderley’s solution,
and the method of characteristics for spherical converging shock
waves {y=1.40). p/po and T/T, are the ratios of pressure and tem-
perature immediately behind the shock to the initial values. The
short upper curves correspond to the pressures after reflection
from the center.

expected, that as the shock approackes the center,
infinite values of pressure and temperature are ob-
tained. It should be pointed out that both of these
analyses are made for a perfect gas with v (ratio of
specific heats)=1.4; and, of course, for all real gases
at the extremely high pressures and temperatures which
will be obtained in converging waves, large departures
from constant heat capacities and increases in the
number of particles due to dissociation and ionization
would be expected. A limitation on the temperatures
and pressures, which would be obtained even in the
absence of these effects, is provided when the con-
verging shock wave reaches radii of the order of several
mean free paths.

That shock waves which converge toward a center
might be experimentally obtainable was suggested first
by the high “stability”’ of plane shock waves. Thus, it
has frequently been noticed that shock waves pro-
pagating in a straight channel containing air at rest

[ - -, 7,

AIR

-7

Fic. 2. Sketch of the Mach reflection configuration. J—incident
shock. R—reflected shock. M—Mach shock. 7—triple point.
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(a shock tube) tend to become perpendicular to the
axis of the channel and very flat. When a shock pro-
pagates in any channel, at the intersection with the
channel walls the shock must, of course, be normal to
the walls. Hence, equal amounts of positive and nega-
tive curvature must be distributed along the shock in
a parallel-walled channel. For the shock (in spite of
disturbances) to become flat, as observed, there must
exist some “smoothing’” mechanism which redistributes
the curvature uniformly.

An analogous phenomenon has been reported in a
converging rectangular channel produced by bending
one of the walls inward. It has been shown? that the
shock tends to approach a cylindrical shape with its

50
rEGULAR RERECTEN
_’//
’(/
~
& 40 S
B T
© 4 s
al Y/ \{;
fa)
= — ~4
w /— ~— \"6
§ 30y /, ~. \4%)/%
5] / S ~ Al
g / T .‘a,e{
e T L
& 20 / ™~ \% \\\
w ; ~. .
I /,-—-\ ~ T
E -2 .
é 10y /— \\ \95{, - T \\\ T o Tl
Q —— o [ o et ——
o 12 £ 1 8 Fde] kil Ll

MACH NUMBER OF INCIOENT  SHOCK

F1G. 4. Attenuation as a function of angle of incidence and Mach
number of the incident shock (from Smith’s observations—which
were very thinly spaced for the higher Mach numbers of the
range shown).

2 A. Hertzberg and A. Kantrowitz, J. Appl. Phys. 21, 874
(1950), Fig. Tc.
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Fie. 5. Schlieren photographs of shock waves turning a corner (obtained from plane shocks with M=1.1). A, B,C, D
indicate the time sequence. Each photograph is of a different shock wave.

ends normal to the channel walls. Here again, the
curvature which was initially concentrated near the
wall corner has become uniformly distributed along the
shock front.

It will be instructive to examine the mechanism of
the distribution of curvature found in these experi-
ments. The wall angle used in the experiments of refer-
ence 2 was small enough so that Mach reflection was
produced. In Mach reflection (see Fig. 2) a portion of
the curvature originally concentrated at the corner is
spread along the Mach shock, while the remainder ap-
pears at the triple point.

]
MERASE .,y
S TRY

Fic. 6. Sketch of cylindrical shock tube.

Since the local air velocity discontinuity across a
shock is normal te the shock, the curved Mach shock
leaves the air moving in a direction intermediate to the
direction of the walls in Fig. 2. (We reserve for later
consideration cases where the Mach shock may have an

Fic. 7. Pholegraph of original cylindrical sheck tube.



Fic. 8. Luminoesity of converging cylindrical shock waves in argon (obtained from plane shocks with M =1.8). The glass window,
rendered visible by double-exposure, was actually § inch in diameter.

inflection point.) For example, from Smith’s results?®
it would be expected that for the case where an incident
shock with Mach number M =1.5 meets a 15° corner
the flow immediately behind the triple intersection is
moving at only 5° to the original flow. Thus, the re-
flection produced when the Mach shock reaches the
opposite wall is weaker than the original reflection. By
repeated reflection the waves following the initial shock
become progressively weaker and the original shock
approaches a cylindrical form.

Since all the elementary (one-dimensional) shock
forms, cylindrical and spherical as well as plane, are
characterized by such a uniformity of curvature, Mach
reflection can give to each of these simple shapes a

! Lincoln G. Smith, “Photographic investigation of the reflec- F1c. 9. Equipment for schlieren investigation of converging
tion of planc shocks in air,” ND{C No. A-350, OSRD No. 6271, cylindrical shock wave,



FiG. 10. Schlieren photographs of converging cylindrical shock waves in air (obtained from plane shocks with
M=1.1). A, B, C indicate the incident waves and D, E, F indicate the reflected waves. Each photograph is of a dif-
ferent shock wave, The glass window was 1} inch in diameter.

“stability of form.”” Thus, in experimental attempts at
production of converging cylindrical or spherical shocks,
inevitable initial deviations from the desired form can
be smoothed and random disturbances encountered in
the course of propagation can be damped out, if this

6

tendency towards uniform distribution of curvature
(stability) exists.

Some quantitative information on the rate of at-
tenuation of corners can be obtained from analysis of
Smith’s results. In Fig. 3 we show a plot of the angle
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F1c. 11. Schlieren photographs of converging cylindrical shock waves in air (obtained from El&ne shocks

with M=1.8). 4B, C indicate the incident waves and D, E, F indicate the reflected waves.

photo-

graph is of a different shock wave. The glass window was 1} inch in diameter.

between the incident and Mach shocks, ¢, vs the in-
cident angle, 6.} When the triple point reaches the

1 In Smith's notation, using « and u, we find
0=fx—a,
¢=0—pu.

opposite wall the reflected Mach reflection will be
weaker if ¢<8. It will be seen from Fig. 3 that for
shocks of the strength used in that plot considerable
attenuation is obtained for small incident angles. Con-
tours of constant attenuation, 1—¢/6, for the sheck



Fic. 12. Schlieren photographs of deliberately disturbed converging cylindrical shock waves in air (obtained
from plane shocks with M =14). 4, B, C indicate the incident waves and D, E, F indicate the reflected waves.
Each photograph is of a different shock wave. The disturbance was a rod }"' in diameter placed in path of shock
about 4 inch before shock appears at‘bottom of glass window (1} inch in diameter).

strengths and incident angles used in Smith’s experi-
ments are plotted in Fig. 4. It is clear from Fig. 4 that
the effects of corners will be rapidly smoothed out for
low Mach number shocks with low incident angles,
such as the case of reference 2, Fig. 7Yc. On the other

hand, it is also clear from Fig. 4 that the effects of
corners in strong shocks will be attenuated much more
slowly, if at all.

In view of the lack of experimental Mach reflection
data for very strong shocks, an attempt was made to

5
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extract some stability information from Lighthill’s
linearized analysis® of Mach reflection at small incident
angles. Lighthill’'s solution shows the Mach shock
always tangent to the incident shock at the triple point
(i.e., =0 or 100 percent attenuation—compare Fig. 4).
However, he shows that for M>2.531 the Mach shock
will have an inflection point and a region near the wall
where the curvature is opposite to that shown in Fig. 2.

Thus, for M >2.531, in the region between the triple
peint and the inflection point, the Mach shock bends
through an angle greater than the incident angle. The
maximum deflection for M= is-1.35 times the in-
cident angle. Consider now the secondary reflected
compression waves, which will come from an upper
wall parallel to the flow in the region IR. The total
deflection in all these waves is greater than the de-
flection at the original corner. Ii all these waves co-
alesced into a single shock (without any weakening by
expansion waves which are present in adjacent regions),
its strength would therefore be greater (by a factor of
1.35 for M= =) than the strength of the original re-
flection. This indicates the possibility of the occurrence
of a slowly divergent series of Mach reflections, i.e,,
instability. Whether or not this instability really exists
cannot be deduced from Lighthill’s solution. A solution
for the large disturbance problem or experimental
studies of the Mach reflection of strong shocks will be
necessary to decide this question,

EXPERIMENTAL PRODUCTION OF CONVERGING
SHOCK WAVES

If we consider now experimental methods of produc-
ing these converging shocks, it is clear that a conical
converging passage may produce a portion of a spherical
wave and a plane converging passage could produce a
sector of a cylindrical wave. However, it seems likely
that wall cooling would prevent the attainment of very
high temperatures in this way, for in this case relatively
large areas of cold wall would be immediately adjacent
to the highest temperature region.

To qvercome this sbjection, we search for methods of
producing the complete wave rather than just a sector
of it. First, we might consider an explosion or detona-
tion near the center of a spherical or cylindrical cavity
and observe the converging shock which is reflected
from the walls of the cavity. This method has the dis-
advantage that the center of convergence is in a fluid
of variable and unknown characteristics; and also,
because of the decrease of stability of the shock with
increasing strength, it seems desirable to avoid dis-
turbances in the vicinity of the center. Alternatively,
we could attempt to initiate an inward-traveling shock
at a cylindrical or spherical surface by bursting a dia-
phragm or some explosive process, but the experimental
difhculty of producing either pure cylindrical or
spherical convergence in this manner seems very great.

¢ M. J. Lighthill, Proc. Roy. Soc. {L.ondon) A198, 454 (1949).

Fic. 13. Example of the onset of regular reflection caused hy
an excessively large random disturbance.

We have already mentioned how a plane shock can be
distorted into a sector of a spherica’ or cylindrical shock
by bending of the channel walls at a sharp corner.
Approximately a quadrant of a cylinder or an octant
of a sphere could be obtained in this way before the
onset of regular reflection would be encountered (see
Fig. 4). However, by decreasing the curvature of the
corner, we can delay the advent of regular reflection.
Thus, if the walls turn inward slowly and smoothly
enough, a plane shock may be converted to a more
nearly complete cylindrical or spherical shock.

To create a cylindrical converging shock there re-
mains still another alternative, for in the above method
we have warped a plane surface into a cylindrical sur-
face with its axis parallel to the plane, and we must
also examine 'the case of a plane converted into a cylin-
der with its axis perpendicular to the plane. If this latter
geometrical distortion could be simply achieved ex-
perimentally, it offered the possibility of producing a
complete converging cylindrical shock (rather than just
a sector).

Indeed, we did find this possible, so our further
studies of converging shocks have been restricted to
the cylindrical form because of the simplicity of its
production under controllable conditions and the ease
of observation of the results—though the spherical
form could yield higher temperatures.

Essential to our design was the assumption that a
shock may be guided nearly at will by a relatively
narrow passage. This was tested in a conventional
shock tube and the resulting schlieren pictures are
shown in Fig. 5. The shock tube, schlieren system, and
spark source used for this predesign experiment are
those described in reference 4. Thus, we have shown
that the shock negotiates the corner successfully, end-
ing up flat and normal to the walls directing it. If such



a cross section is rotated about an axis, we obtain some-
thing similar to a child’s toy top mounted within a
capped pipe, as indicated in the sketch of Fig. 6. It is
clear that such a cylindrical shock tube must generate
something approaching a cylindrical converging shock.
The apparatus shown in Fig. 7 was therefore con-
structed. The high pressure chamber was filled with
helium and the low pressure chamber with air. The
helium generated a shock of Mach number roughly 1.8,
If perfect cylindrical convergence were obtained to a
shock diameter of say five mean free paths (i.e., mean
free paths in the undisturbed air), we would expect a
temperature sufficient to dissociate and possibly even
to lonize at least some of the components of the air.
We looked through the glass window in a darkened
room, expecting to see light given out by the converging
shock wave as it approached the center. The expected
light appeared. It proved rather difficult to photograph,
however, probably because most of the light given off
by air when highly compressed is not in a spectral re-
gion easily transmitted by glass. On the other hand,
shock waves of the same strength in argon preduced
easily photographable Iuminosity. In Fig. 8 are pre-
sented several such photographs. Also the conductivity
of the argon in the region of convergence was roughly
checked and found to indicate the occurrence of
iopization,

To study the stability of the converging shocks we
undertook a schlieren investigation with the equipment
shown in Fig. 9. Because a spark source could not be
mounted internally owing to the construction of the
cylindrical shock tube and its rather small size, it
seemed necessary to use a folded optical path with the
light reflected by the first surface mirrer on the end of
the teardrop and twice traversing the region to be
examined. The knife-edge is placed as close as feasible
alongside the virtual line source at the focus of the
schlieren lens to insure that the incident and reflected
beams of parallel light traverse nearly the same path
through the gas.

The spark source used was similar to one previously
described,® being merely the discharge through a suit-
able gap of three Glass mike ccndensers each rated at
0.05 uf for 7500 v and each placed at the corner of a
triangle enclosing the spark gap. The main spark was
triggered at the desired time by a teaser electrode be-
tween the main electrodes.

Actuating a solenoid concealed within the ‘‘tear-
drop”” caused a needle to pierce the cellulose acetate

& L.. 8. G, Xovidsznay, Rev. Sci. Instr. 20, 696 (1949).

10

diaphragm separating the two chambers of the shock
tube, releasing the pressurized gas and initiating a
plane shock wave. As this shock proceeded along the
tube, it broke an electrical contact mounied above a
tiny orifice in the side of the tube. Breaking the con-
tact activated an RC delay circuit, causing a thyratron
(after the pre-set delay) to fire through the primary of
a transformer, the secondary of which was connected
in the teaser electrode.

Schlieren photographs of the converging cylindrical
shock were obtained for two different pressure ratios
across the diaphragm and a few of the results are dis-
played in Figs. 10and 11. In these photographs it is also
seen that, as our previous stability considerations would
lead us to expect, the approach to cylindrical form even
in the visible region becomes poorer as initial shock
strength increases. This is due’partly to the slower
dying away of the effect of the corner and partly to
slower attenuation of disturbances resulting from burst-
ing of the diaphragm (though the magnitude and ir-
regularity of these diaphragm bursting disturbances did
also- increase for the stronger shocks due to poorer
diaphragm material).

If perfect cylindrical convergence were to continue
even through the microscopic region, then irregular
vortices, such as are to be noted in both series of photo-
graphs, would not occur. We take the intensity of these
irregularities as a measure of the departure from per-
fect convergence. Previously, on the basis of Fig. 4 we
concluded that the cylindrical shock should be com
pletely formed and the large disturbances necessary to
produce and shape, it should be nearly fully attenuated
while the shock is still weak, before any appreciable
convergence occurs. The experimental results seem
support this viewpoint.

To verify visually our ideas of Mach reflection and
shock stability which have already been outlined, we
placed a small obstacle in the path of the shock just
before it reached the region of observation. As nearly
as possible we duplicated all other conditions under
which the pictures of Figs. 10 and 11 were obtained and,
for an intermediate pressure ratio across the diaphragm,
secured the results presented in Fig. 12 The net result
of the artificial disturbance is seen to be merelv a dis-
placement of the center of convergence towards the
disturbed side.

In Fig. 13 we present a case in which the disturbance
produced by incomplete bursting of the diaphragm was
so great that regular reflection occurred, destroying the
cylindrical convergence.



A theory of the stability of plane shock waves
By N. C. FReEMAN
(Communicated by M. J. Lighthill, F.R.S.—Received 1 September 1954)

The stability of form of a plane shock, obtained when a ‘corrugated’ piston is moved
impulsively from rest with constant velocity, is investigated mathematically. Linearization
of the problem is sccomplished by assuming the corrugations to be amall. The solution is built
up by methods of Fourier analysis from ‘conefleld' solutions of the analogous ‘wedge’.
ghaped piston problem, solved by methods due to Lighthill. The plane shock is shown to be
stable, perturbations from plane decaying with time in an oscillatory manner like ¢~ for
large ta,/A (where a, is the velocity of sound behind the shock and A the wave-length of the
corrugations). The stability, measured by the amplitude of this oscillation after the shock has
traversed a given distance, decreases both as the shock Mach number increases above and
decreases below the value 1-14. Shocks of this strength exhibit strongest stability.

Asymptotic forms for large time are given for both the shock shape and pressure distribu-
tion for shocks of moderate strength in §4. A more compliocated asymptotic form for the
shock shape holds at large Mach numbers /§5) which in the limiting ocase of inflnite Mach
number gives the result that the perturbations of shape decay like ¢~ only. Complete
solutions are obtained for weak shocks i terms of Bessel functions (§6).

1. INTRODUCTION AND DISCUSSION OF RESULTS

This paper is concerned with the attenuation of small perturbations in shape of
plane shock waves during propagation into a stationary fluid. This phenomena has
been studied experimentally by Professor A. R. Kantrowitz, together with the
analogous problem for a cylindrieally converging shock. The rapid attenuations of
perturbations for the plane case has led Kantrowitz & Perry (1951) to call the pheno-

il



~ mena the ‘stability’ of shock waves. Quite generally, therefore, we may, following
Kantrowitz, define the stability of form of a plane, cylindrical or spherical shook
_wave as the ability to approach perfect plane, cylindrical or spherical shape as it
propagates, owing to a gradual equalization of curvature between neighbouring
portlons
- Itwill be realized that stability will play an important part in the production of
shocks in a shock tube. This method is recognized as a very efficient way of pro-
ducing plane shocks of any given strength in spite of the fact that the shook,
initially produced, is far from being uniformly plane. The rupture of the diaphragm
in the tube causes the shock to originate as a spherical perturbed wave becoming
plane only after it has travelled several shock tube diameters down the tube.
Nevertheless, the distanocé travelled before the shock is completely plane is com-
paratively small.
. For a cylindrical converging shock the problem becomes much more complicated.

Kantrowitz has shown that this stabilizing effect is not nearly so marked, the
stability a.ppa.rently decreasing rapidly with increase of Mach number. This pro-
blem will not, however, be considered in this paper. It is hoped that the study of
a fundamentally simpler problem, that of a plane perturbed shock, may prove
useful in understanding the essentially more difficult mathematical problem of the
cylindrical shook.

Physically, the problem is essentially a three-d1mens1ona1 one, but it will be shown
to be sufficient to solve, mathematically, the problem in two dimensions. The
three-dimensional solution can then be deduced from it. A mathematical approach
to this problem necessitates solving the equations of inviscid fluid theory in two-
dimensional unsteady flow. It will, however, be sufficient to neglect squares of
perturbations to the steady flow behind a uniform shock. This type of problem has
been solved by Lighthill in his papers ‘ Diffraction of blast, I and I’ (1949, 1950).
. The only assumptions’in these solutions are that the inviscid fluid equations are
valid behind the shock and that the perturbations of the flow field are small. The
first paper is concerned with a shoock moving along a plane wall, which suddenly
changes in direction by a small amount . The perturbations on the original plane
shock, after it has passed the corner, are then of order 4. The results show the well-
known Mach-type reflexion. Blackburn (1953) has extended this work to the case
of a shock moving along a ‘wavy’ wall, having a sinusoidal profile. The method, in
effect, necessitates obtaining the Fourier transforms of the plane-wall solution.
Blackburn actually obtains the solution by solving the wave equation satisfied by
the perturbation pressure under boundary conditions given on the shock and the
wall. The results can be expressed as asymptotio expansions valid for large dis-
tances from the wall. It is found that for finite Mach number the perturbation &,
defined as the distance the shock is displaced from plane, decays like ¥t when Y is
the distance from the wall. As the Mach number becomes very large the decay
becomes more like ¥—*. The physical significance of this result will become evident
later.

In Lighthill’s second paper (1950), the problem of a shock undergoing normal
reflexion from a similar slightly wedge-shaped wall is considered using the above
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method on the perturbation of the solution of shock reflexion from a plane wall.
The shock shape after reflexion and also the wall pressure distribution are found.
This work has again been extended by Blackburn to the case of shock reflexion from
a ‘wavy’ wall, having a profile ee!*Y, by considering the Fourier transform of the
Lighthill reflexion problem. In this work, Blackburn shows that the perturbation
of the reflected shock oscillates with time, for large time, these oscillations decaying
like ¢-1, This, in itself, is a valuable contribution to shock stability theory; but there
are two objections to this approach, if it were intended as a complete solution of
the problem. First, the initial shape of the reflected shock is not known, and
secondly, the reflected shock has & maximum strength of 2y/(y—1) (=17 for y =),
restricting the theory to perturbed shocks of Mach number between 1 and 2-648.
In an attempt to find a more satisfactory model for a discussion of stability, the
author decided to investigate the motion of & corrugated piston into a stationary
inviscid fluid, this being the most realistic model consistent with mathematical
simplicity. This may be considered mathematically as a perturbation of the
solution for a plane piston moving into a stationary inviscid fluid. If the plane
piston is considered to start impulsively from rest and subsequently maintain a
constant velocity V, a shock will be produced on the piston and will propagate
forward at a velocity U, greater than V. The solution of this problem is well known
—+the pressure, velocity and density of the fluid being donstant behind the shock,
which moves into the stationary fluid with constant velocity. The magnitudes of
the constants are obtained from the following formulae expressed in terms of the
piston speed; U, p, p are the velocity, pressure and density, respectively, of the gas:

~2
M=g=§z[1+J{1+(§L:) ”
ag Sa, ba
P TM2-1 P _ 622
Do 6 po—Mz-{-S'

Here, the suffix zero refers to conditions in front of the shock and a, = 4/(74/5p,)
is the sound speed; the ratio of specific heats is taken to be 7/5. Hence M, the Mach
number of the shock, varies over the whole range from one to infinity.

The equations of motion for unsteady two-dimensional inviscid flow, satisfied
behind the shock, are expressible as linear equations in the perturbation pressure,
velocities and density. Elimination of all variables except the pressure yields the
wave equation, Physically, this equation asserts that all pressure variations behind
the shock front propagate with the local mean speed of sound. In addition, they
satisfy boundary conditions at the shock wave and at the piston.

Tt is found convenient to attack this problem indirectly. Following Blackburn,
we build up the solution of this problem as a combination of conical-field solutions
of the wave equation. These can be obtained by conformal mapping techniques as
in Lighthill’s part II. Each satisfies a boundary condition at the surface of a wedge-
shaped piston, and they can be combined to produce a piston of corrugated shape by
expressing the slope of the piston surface as a combination of small discontinuities
a small distance apart.
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A piston of wedge shape is considered first, having a single discrete change in
slope of 24 at the origin and symmetrical about the X-axis, extending to infinity
in the positive and negative Y directions. As the piston extends to infinity, there is
no fundamental length in this problem. The equations can therefore be transformed
into equations in the two new variables obtained by dividing the space variables
by time. The perturbation pressure, as before, satisfies a simple equation in terms of
these variables; in words, it is a ‘conical field’ solution of the wave equation.
Boundary conditions are satisfied at the shock wave and at the piston, which occupy
fixed positions in terms of these new variables, since the mean speed of each is
constant. The region perturbed by the discontinuity of piston slope at the origin
will expand with the sound speed behind the shock. Outside this region the shock
will move away from the piston exactly as in the plane case. The perturbed region
is therefore bounded by the shock, the piston and a steady flow region. Mathe-
matically, it is necessary to solve a second-order linear differential equation with
two independent variables with given boundary conditions. In a closely similar
case, the solution has already been obtained by Lighthill in the form of derivatives
of pressure over the perturbed region. The solution, which is easily adapted to the
present problem, is complicated to deal with in this form, the shock shape having
to be deduced by numerical methods; but returning to our original problem of the
corrugated piston, it is possible to obtain a complete solution in terms of these
results. If the piston shape is given by X = ee!®¥, where Y is measured in the plane
of the piston and X perpendicular to it, then the change in slope between points
Y =7 and ¥ = g+dy is —ew?el“rdy. Thus, replacing 24 in the ‘wedge’ solution
by —ew?el“tdy, ¥ by Y —7 and integrating all along the wall with respect to 7,
the complete solutions are obtained. An explicit relation is therefore obtained for
the shock shape as the Fourier transform of the ‘wedge’ solution.

The behaviour of the Fourier transform of a function for large argument is deter-
mined by the singularities of the function. Hence, asymptotic expressions for large
time (compared with the time taken for a sound wave to traverse one wave-length
of the wall) can be obtained for the corrugated’ solution from consideration of the
singularities of the ‘wedge’ case. Disoussion of the singularities will be a profitable
way of studying the stability of the perturbed shock. The perturbed region is
bounded by the shock, the piston and the wave front (on which » = R/a,t takes the
value unity, where R is the distance from origin and a, the speed of sound bebind
- the shock). Now, the behaviour of the pressure on the wave front, ainee it is that of
a cylindrical wave, must be like (1 — r)¥. This corresponds to a decay with time like
¢ for the Fourier transform, The pressure behind the shook decayslike¢—¥, therefore,
for & shook produced by a ‘corrugated’ piston. However, the shock boundary con-
ditiori in the ‘wedge’ case (see equation (2:9) below) is found to imply that the
gradient of pressure in a partioular direction is zero on the shock. This is compatible
with the singularity at the wave front, which makes the gradient infinite for any
direction except a tengential one, only if the particular direction is tangential to
the wave front. This is the case only for infinite Mach number. For finite-shock
' Mach number, therefore, the strength of the cylindrical wave must vanish at the
shook-wave front intersection, and this is found to be the case, the singularity on the
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