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PREFACE

This is a volume of programmes on numerical methods which is part of a
course written for undergraduate science and engineering students in
universities, polytechnics and other colleges in all parts of the world.
Numerical methods are now included in the syllabuses for all such students
and this book covers most of the work that these students are likely to
require. The emphasis is on the practical side of the subject and the
more theoretical aspects have been omitted. Numerical methods are, of
course, closely linked to the use of the computer and several references
will be found as to the suitability of various methods for programming

on to a computer. As different programming languages are in use, the
various techniques discussed have not, with one exception, been translated
into computer programs, but, wherever appropriate, flow diagrams have been
incorporated into the text. References have, however, been given to
other books in which typical computer programs can be found. A list of
these references appears on page 377.

When one is using numerical methods as a tool, the majority of the
calculations would be done on a computer, as, except in a few simple cases,
the amount of arithmetic involved is far too complicated to do any other
way. However, when learning the subject there is nothing, in general, to
be gained by taking very complicated examples or by carrying working
through to a very large number of significant figures. Doing relatively
simple examples manually does give the student an appreciation of what is
involved and so the actual numerical working of many examples has been
included.

If the reader has access to a calculating aid, such as a pocket

calculator, it will be found very helpful.

often mean that the working can only be done
or decimal places than is indicated. It is
irrespective of the number of decimal places

However, if not, it will

to fewer significant figures
suggested, therefore, that,
asked for, working is only

done to such a number as can conveniently be obtained. Any points that
consequently might not be obvious can still be followed from the working
in the text.

The volume comprises three Units in which are grouped programmes on allied
topics. Before reading a programme, the student should be familiar with
the items listed under the heading of Pre-requisities at the beginning of
each Unit. The programmed method of presentation has been used throughout
and has many advantages. The development of the subject proceeds in
carefully sequenced steps, the student working through these at his own
pace. The active participation of the student is required in many places
where he or she is asked to answer a question or to solve, either
partially or completely, a problem. The answers to these are always
given so that the student can check his attempt and thus obtain a
continuous assessment of his understanding of the subject. Explanation
of the material covered is given in greater detail than is often to be
found in conventional style textbooks, especially at those points where
difficulties are most likely to occur.

In places where units are involved, the S.I. system has been used. The
standard practice of using italic letters for quantities, e.g., C for
capacitance, has not, however, been followed as italic lettering is used
for the answer frames. Where natural logarithms occur, the notation

In is used.
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Where references are made to frames in the same programme, only the frame
numbers are given. Where page numbers are quoted as well, this indicates
that references are to frames in another programme,

Several references are made to our volumes on Mathematics for Engineers
and Scientists. The details of these books are:

Mathematics for Engineers and Scientists, Volume 1.

A.C. Bajpai, I.M. Calus, J.A. Fairley Wiley, 1973,

Mathematics for Engineers and Scientists, Volume 2.
A.C. Bajpai, I.M. Calus, J.A. Fairley, D. Walker Wiley, 1973.

We have also referred to

Fortran and Algol
A.C. Bajpai, H.W. Pakes, R.J. Clarke, J.M. Doubleday, T.J. Stevens
Wiley, 1972.

In spite of careful checking by the authors, it is possible that the
occasional error has crept through. They would appreciate receiving
information about any such mistakes which might be discovered.

A debt of gratitude to the following is acknowledged with pleasure:

Loughborough University of Technology for supporting this venture.

Staff and students of the university and other institutions for their help
in various ways. -

Mrs. Barbara Bell for preparing the camera-ready copy from which the book
has been printed.

Taylor & Francis Ltd for their help and cooperation.

The Unzverszty of London and the Council of Engzneerzng Institutions for
permission to use questions from their past examination papers. These
are denoted by L.U. and C.E.I. respectively.

John Wiley and Soms Ltd for their help and cooperation.
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INSTRUCTIONS

Each programme is divided up into a number of FRAMES
which are to be worked in the order given. You will
be required to participate in many of these frames and
in such cases the answers are provided in ANSWER
FRAMES, designated by the letter A following the
frame number. Steps in the working are given where
this is considered helpful. The answer frame is
separated from the main frame by a line of asterisks:
Kkdkkkkk Keep the answers covered until you have
written your own response. If your answer is wrong,
go back and try to see why. Do not proceed to the
next frame until you have corrected any mistakes in
your attempt and are satisfied that you understand
the contents up to this point.

Suggestion to the Reader

It is strongly recommended that you make use of a pocket
calculator to help you with the arithmetic involved in
the examples.
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UNIT 1
EQUATIONS and MATRICES

This Unit comprises four programmes:

(a)
)
(c)
(d)

Basic Ideas, Errors and Evaluation of Formulae
Solution of non-Linear Equations
Simultaneous Linear Equations

Matrices

Before reading these programmes, it is necessary that you are

familiar with the following

Prerequisites

For (a):

For (b):

For (c¢):

For (d):

Differentiation, including the definition of a derivative in

terms of a limit.

The binomial theorem, differentiation and Taylor's series for

the main programme.
Maxima and Minima for APPENDIX A.
Partial differentiation and differentials for APPENDIX B.

Notation of determinants and algebra of complex numbers for
APPENDIX C.

Taylor's series in two dimensions for APPENDIX D.

Evaluation of Determinants, matrix notation for linear
simultaneous equations, including the augmented matrix, for the

main programme.

Partial differentiation and differentials, the properties of

inequalities of absolute values for the APPENDIX.

The algebra of matrices. The meaning of eigenvalues and
eigenvectors and the analytical method of their

determination.




Basic Ideas, Errors and Evaluation of Formulae

FRAME 1
Why Numerical Methods?

So far in your mathematics course, you have probably concentrated ma%nly
on analytical techniques. Thus it is likely that you know how to find,

for example,
d b
— sin®3x  and x cos 2x dx,
o}

dx

and also how to solve an equation such as

42 d X
i R R
Again, you have probably met determinant and matrix methods for solving
a set of simultaneous linear equations. So your reaction on
encountering a book such as this may very well be — Why Numerical
Methods? - or, perhaps, the even more fundamental question - What are
Numerical Methods?

FRAME 2

When studying, for example, integration, you learn many techniques for
integrating a variety of functions. Some of these techniques are
integration by substitution, integration by partial fractionms,
integration by parts, etc. But whatever methods you learn, there are
still many functions th§t you just cannot integrate. Two examples of

such functions are e * and sin vX. Again, when dealing with
differential equations, anything slightly different from one of the few
standard types of equation can lead to a situation whose solution is
extremely difficult or even impossible by standard techniques. So you
will see that we are sometimes very restricted in what we can do by
purely analytical methods. However, don't get the impression that all
your troubles will be over when you have finished this bo%ki Some of
2
them will be - for example, you will know how to find .A: e ¥ dx but
2

you will be no nearer to finding the indefinite integral e * dx.

FRAME 3
Turning for a moment to the solution of simultaneous linear equations,
the use of Cramer's rule or of the formula EE%TK adj A for A”! does
not present much trouble if, say, you have to solve three equations in
three unknowns. However, if you have to solve fifty equations in fifty
unknowns, such as can occur when dealing with space frames which are used
in roof trusses, bridge trusses, pylons, etc., you are going to require
some help with the arithmetic and for that help you will probably turn to
a digital computer. This piece of equipment will almost certainly not
use either of the two methods quoted above as the evaluation of
determinants is a very time consuming process on a computer and 'time',
where a computer is concerned, is simply another way of spelling 'money'.
In such a situation, a numerical approach is adopted which, incidentally,
is also purely mechanical in its operation.




BASIC IDEAS, ERRORS AND EVALUATION OF FORMULAE

FRAME 3  (continued)

Whilst on the subject of equations, there are many simple 109king §ing1e
algebraic equations that you would find very troublesome or impossible
to solve analytically - for example, how would you set about solving the

equation e* =10 - x? Such an equation can, however, be solved
numerically, to any required degree of accuracy, with very little
difficulty.

FRAME 4

Some problems which cannot be solved analytically do at least have an
analytical look about them in thg figst place, for example, the equation
e* =10 - x and the integral e * dx. However you may quite well
meet a problem that is not even formulated in analytical terms. For
example, suppose an experiment has been performed and a series of values
of, say, the temperature 6 of a body measured against a series of values
of the time t. Thus the values of 6 may be measured at intervals of
one minute. Having performed the experiment, you may then be asked
"What was the temperature after 5} minutes?" or "At what rate was the
temperature changing after 10 minutes?”" You cannot use analytical
means to answer questions such as these as the formula for 6 in terms of
t is not known. Again a numerical method is necessary to determine the
answers to such questions.

FRAME 5

The following are some more examples of practical problems that require
numerical methods for their solution:
& occurs in Fraunhofer diffraction.

sin a}z -
2

What value of a satisfies this equation?

The equation {

The motion of a planetary gear system in a certain automatic

o s . . . ot v
transmission involves the equation sin wt - e = 0. What is

the smallest positive value of t for given values of a and w?

A certain column buckles when kL has the least positive value that
satisfies the equation tan kL - kL = 0. What is this value of kL?

X
0
X

x"e

o e* - 1)2

capacity of a solid by a method based on the vibrational frequencies
of the crystal. What is the value of this integral for a given x,?

The integral dx occurs when obtaining the heat

Az

. 1 : s . .

The 1ntegral/ T he/ KT dA occurs in finding the fraction
A, A(e -1)

of total energy that is visible radiation of a black body. What is
the value of this integral for given values of A, and Ao ?




BASIC IDEAS, ERRORS AND EVALUATION OF FORMULAE
FRAME 6

Once a numerical method has been found for a particular type_of problem,
it can also be used for similar problems that do have analytical
solutions. For example, the same numerical technique can be used for

solving x%2 - 2x - 14 = 0 as for eX = 10 - x. So your question now
might be — If I can solve a greater variety of problems by numerical
techniques than I can with analytical methods, why bother with the
analytical techniques? This question has two answers:

(1) If an analytical technique exists, it is usually easier and more
exact than the corresponding numerical method - for example, the
easiest way of obtaining the solutions of x? - 2x - 14 = 0 is
still by the use of the quadratic formula. But even this
requires some method of evaluating v%60.

(ii) Analysis forms the basis of many of the numerical techniques.

The conclusion we should draw is that both analytical methods and
numerical methods have, in their own rights, their places in mathematics
and that in any particular problem where there is a choice as to the
method of solution, then the method chosen should be that which leads to
the best combination of simplicity, speed and accuracy. As analytical
methods have been considered in 'Mathematics for Engineers and
Scientists, Vols. 1 and 2', by the present authors, this book will
concentrate on numerical methods.

FRAME 7
Aids to Calculation

The majority of problems which are tackled by numerical methods involve
a considerable amount of arithmetic. Some help with this arithmetic
is obviously desirable and in most cases essential. Some of the aids
available you will have already met - for example, mathematical tables
and slide rules. These are useful tools when the number of
calculations to be performed is limited and relatively few significant
figures are required in the answers. Furthermore they are restricted
to multiplication and division, being of no help for addition and
subtraction. The number of significant figures obtainable with these
aids can be increased by the use of more comprehensive tables, quoting
quantities to more significant figures (e.g., six-figure instead of
four-figure logs), and larger slide rules.

FRAME §
Proceeding up the scale, so to speak, we next come to the mechanical
desk calculator which is basically an adding and subtracting machine.
However, as multiplication can be performed by a series of additions
and division by a series of subtractions, many desk machines were
modified so that they could carry out these operations either
automatically or semi-automatically. The number of significant figures
to which they could work was usually greater than is the case with
either tables or a slide rule. Originally this type of machine was
driven manually but later electrically driven models were introduced.

The mechanical type of desk machine has now been almost entirely
superseded by electronic types and some of these are even programmable
thus turning them into mini-computers. So rapid have been the recent



BASIC IDEAS, ERRORS AND EVALUATION OF FORMULAE

FRAME 8 (continued)

advances in this type of machine that electronic pocket calculators
are now widely used.

FRAME 9

Useful as desk and pocket calculators no doubt are, they pale into
insignificance when compared with a full-size digital computer. Not
only is such a machine extremely fast but it can be given a whole set of
instructions and left to get on with the job, whereas a desk machine
requires constant attention. It is really the advent of the computer
that has brought numerical methods into their own. Before computers
were available there just was not the means of doing vast amounts of
arithmetic at a reasonable speed. So although the numerical methods
were there, their use was considerably restricted.

It may happen that there is more than one method available for solving a
problem numerically. In that case the tendency these days is to use
that method which is best suited to the computer.

FRAME 10

When applying numerical methods in actual practice, it is the more
complicated type of problem (e.g., fifty simultaneous linear equations in
fifty unknowns) that is liable to occur. However the methods used in
the solution of such a problem are basically the same as those which can
be used in much simpler cases (e.g., three simultaneous linear equations
in three unknowns). As there is nothing to be gained when learning the
actual methods by having very complicated problems, the examples used in
these programmes to illustrate the methods will therefore be kept
relatively simple.

If you have access to a desk machine or a pocket calculator you will
find it a great help when working through the examples in this book.

If, however, you haven't, you will still be able to do most of the
working with the aid of a set of mathematical tables. This will mean
that in some places you will only be able to work to a fewer number of
significant figures with consequent loss of accuracy. In some examples
you will find this loss of accuracy very marked. Even so, you will
still be able to appreciate the techniques involved.

You may also have knowledge of a computing language. If so, then
having learnt the technique of a numerical method, it will be a good
idea for you to write a computer program for that method, and, if
possible, get it run on a computer, using suitable data.

FRAME 11
Accuracy and Errors - Types of Error

Whenever calculations are performed there are many possible sources of
error and errors will obviously affect the accuracy of the solution of a
particular problem. Errors can be introduced in three ways:

(i) Mistakes made by the person carrying out the calculations,
(ii) The use of inaccurate formulae,
(iii) The use of inaccurate data, including the effects of round~off.

In the next few frames, we will have a look at each of these in turn.




BASIC TDEAS, ERRORS AND EVALUATION OF FORMULAE
FRAME 12

Theoretically, all errors made under the heading (i) shouldn't be there
at all. But, as a certain gentleman once remarked: '"To err is

human ........ " and the operator is, of course, human. However, in
some cases he may be forgiven - if, for example, he is using a machine
that has developed a fault which he cannot detect. Even so, such a
fault is still going to affect the accuracy of his result.

Mistakes commonly made by a human operator occur when copying and when
doing mental arithmetic. Two common copying errors are:

(a) the reversal of two digits, e.g. writing down 236 721 instead
of 263721, and

(b) the repetition of the wrong digit, e.g. 233 721 instead of
223 721.

It is obviously best to avoid such mistakes as these but as the chances
are that you will still make some, it is advisable to take steps to,
firstly, reduce the number that you make and, secondly, try to detect
any that you do make as soon as possible.

To reduce the probability of making mistakes, it is very advisable to
keep your computational work neat and tidy - and also legible.
Furthermore try and arrange your work so that you have to copy numbers
as few times as possible. To assist in detecting mistakes you should
arrange to check your working wherever possible - not by repetition but
by some independent process. How this can be done in certain cases
will be indicated later.

In some types of work, mistakes are automatically taken care of. This
does not mean, of course, that you shouldn't take care not to make them
as they can still cause you to waste time.

FRAME 13

In the case of (ii), an inaccurate formula may arise due to chopping off
an infinite series after a finite number of terms. For example, this
is done when Simpson's rule is obtained by the use of Taylor series.
f(a-h) and f(a + h) are expanded in powers of h but all terms
involving powers greater than the second are dropped. An error
introduced in this way is known as a TRUNCATION ERROR.

FRAME 14

A truncation error such as that described in the last frame leads to an
approximate formula being used instead of an exact one.

Differentiation gives us another example where a true formula may be
replaced by an approximate one. As you know, if y = f(x) then the

value of %% at the point x = a is given by the formula

dy _ lim f(a + h) - f(a)
dx h»0 h

. : d . . .
Assuming h is small, 5% 18 gilven approximately by the formula

f(a+ h) - f(a)
b (14.1)



BASIC IDEAS, ERRORS AND EVALUATION OF FORMULAE

FRAME 14 {continued)

the accuracy increasing as h is decreased. To illustrate this, if
x

_F oy _x-1 x ca 9o s,
Y= % T TxE e and so, when x = 2, ax 1-8473
Now use the formula (14.1) to find approximate values for %% when

a=2 and h is, in turn, 0+2, O*1, 0-05, 0-Ol.
Fekkdokdekkdekkkhdkkkkkkkhkhhkkkhhkhkkhkkkhkikk

2-038, 1+941, 14892, 1-85.

FRAME 15

As vwe have already observed from our work on calculus, the result
obtained always becomes better as h is decreased. At least it does
theoretically. Practically there are certain other snags which may
upset the apple cart, as will be seen later. You will also find later
that many numerical methods involve the choice of an h (Simpson's rule
is another example) and that when this is the case, the smaller it is,
the better. However, there are other points to be noticed in
connection with the results obtained in 14A, and we now come to errors
introduced due to the use of inaccurate data [(iii) in FRAME 11].

When calculating the value of %% as given by the formula (14.1), you
had to evaluate

eZ'Z _ e2

2°2 2
0-2
for the case when h = 0¢2. What aids did you use in evaluating this

expression?
Kkkkkkkkkihkihkkhkhkkkhhkhkikdhhkhkrikkkkkik

15A
Almost certainly you used exponential tables for e*? gnd e?. The

division by 2+2 you may have earried out on a desk or pocket caleculator,
by logs, on a slide rule or without any such aid.

Division by 2 and 0-2 and also the subtraction you probably did
mentally.

FRAME 16
Accuracy and Errors - Round-off

Taking first the values of e?? and e? from (as we did) expomential
tables to four places of decimals, the figures 9-0250 and 7-3891 are
obtained. It is, of course, extremely unlikely that these are the
exact values of e?'? and e?. They are almost certainly subject to
ROUNDING ERRORS. These occur whenever a number is quoted correct to so
many decimal places or significant figures, the quoted figure being thus
not quite the true value. Various questions then arise such as:— What
effect do such errors have on the result of the calculation? Are any
other numbers in our original expression subject to error in this way?
If so, what effect will this have on the result? Are any more round-
off errors likely to occur during the course of the calculation?

)



