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PREFACE

The understanding of nuclear and elementary particle physics has
now reached a historical turning point. During the last decade, a
revolution has quietly occurred — a revolution called “Gauge Theory™’.
For the first time in 50 years, since the birth of modern nuclear
physics, gauge theory allows us to understand how the fundamental
forces of nature may be unified within a single coherent theory.
The discovery of gauge theory rivals in importance the development
of both relativity and quantum mechanics. In contrast to the
situation less than 10 years ago, gauge theory now dominates nearly
all phases of elementary particle physics today. Even the reasons for
performing new experiments are now judged by their relevance for
testing the predictions of gduge theory.

Clearly, such an exciting development should be widely accessi-
ble and understandable not only to theoreticians but also to experi-
mental physicists, students and the *“‘intelligent layman™ as well.
Like politics and war, gauge theory has become too important to
be left only to the experts. Unfortunately, for the reader who wishes
to first understand the basic physical ideas behind gauge theory,
the published literature can present a daunting challenge. The
reason for the difficulty is that gauge theory represents a totally
new synthesis of quantum mechanics and symmetry ideas which
have been applied to the entire field of elementary particle physics.

I believe that gauge theory can be appreciated by the non-
expert; that is the raison d’etre for this primer. In order to emphasize
the physics of gauge theory rather than the mathematical formalism,
I have used a new intuitive approach and designed the text primarily
for the reader with only a background in quantum mechanics. My
goal in this primer is to hopefully leave the reader with an apprecia-
tion of the elegance and beauty of gauge theory.



viii Preface

This book was motivated by my own desire as a2 “‘non-expert”
to learn something about gauge theory. Over a period of 4-5 years,
I wrote a series of short pedagogical articles on gauge theory topics
for the American and European Journals of Physics. These articles
allowed me to test the ideas and the writing style for this primer.
I also found that trying to satisfy the high standards of the referees
for these journals encouraged me to develop much clearer explana-
tions for many gauge theory topics. I am indebted to these referees
who do their work in anonymity.

K. Moriyasu Seattle,
: July, 1983
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CHAPTER |
INTRODUCTION

the best reason for believing in a renor-
malizable gauge theory of the weak and electro-
magnetic interactions is that it fits our pre-
conceptions of what a fundamental field theory
should be like. '

S. Weinberg, 19741

Modern gauge theory has emerged as one of the most significant
and far-reaching developments of physics in this century. It has
allowed us for the first time to realize at least a part of the age old
dream of unifying the fundamental forces of nature, We now believe
that electromagnetism, that most useful of all forces, has been
successfully unified with the nuclear weak interaction, the force
which is responsible for radioactive decay. What is most remarkabic
about this unification is that these two forces differ in strength by a
factor of nearly 100000. This brilliant accomplishment by the
Weinberg-8alam gauge theory, and the insight gained from it, have
encouraged the hope that all of the fundamental forces may be
unified within a gauge theory framework. At the same time, it has
been realized that the potential areas of application for gauge theory
extend far beyond elementary particle physics. Although much of
the impetus for gauge theory came from new discoveries in particle
physics, Jhe basic ideas behind gauge symmetry have also appeared
in other areas as seemingly unrelated as condensed matter physics,
non-linear wave phenomena and even pure mathematics. This
diversity of interest in gauge theory indicates that it is in fact a
very general area of study and not exclusively limited to elementary
particles.

'S. Weinberg, Rev. Mod. Phys. 46, 255 (1974).

3650056
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An Elementary Primer for Gauge Theory

In this primer for gauge theory, our purpose is to present an
elementary introduction which will provide an adequate background
for appreciating both the new theoretical developments and the
experimental investigations into gauge theory. We have therefore
adopted a very general pedagogical approach which should be useful
for very different areas of physics. Like any new topic in physics,
the study of gauge theory requires some familiarity with background
mate ial from other areas of physics and mathematics. Gauge theory
reprisents a new synthesis of quantum mechanics and symmetry. At
the same time, it is also a direct descendent of quantum electro-'
dynamics; thus much of the published literature on modern gauge
theory is written in the language of renormalizable quantum field
theory which has proven so useful in electrodynamics.

In this primer, we have adopted the point of view that if is
possible to learn the fundamentals of gauge theory by using a much
simpler semiclassical approach. By semiclassical, we mean Maxwell’s
electromagnetism and old-fashioned Schrodinger quantum theory
where the electromagnetic field is not second quantized. By using
such an approach, we can emphasize the new physics of gauge
theory without the added technical complexities of quantum fieid
theory. A limitation of our approach is that we cannot discuss
the -:oblems associated with the quantization of gauge theory in
any rigorous fashion. However, since these problems are among the
most subtle and difficult in gauge theory, we feel that they can
best be studied separately in more advanced treatments such as the
excellent review of Abers and Lee.?

One éssential requisite for the study of gauge theory is at least
a nodding acquaintance with some of the terminology of group
theory. The heart of any gauge theory is the gauge symmetry group
and the crucial role that it plays in determining the dynamics of the
the ,ry. Fortunately, much of the necessary group theory is already
familiar to physics students from the treatment of angular momen-
tum operators in quantum mechanics. The essential difference in

*E. abers and B. Lee, Piys. Rep. 9C. 2 (1973).



Introduction 3

gauge theory is that the symmeftry group is not associated with any
physical coordinate transformation in space-time. Gauge theory is
based on an ‘‘internal” symmetry. Therefore, one cannot speak of
angular momentum operators, but must replace them with the more
abstract concept of group generators. This is more than a mcre
change of labels because the generators have mathematical properties
which were previously ignored in quantum mechanics but are very
useful in gauge theory. In particular, we will see that the proper
understanding of gauge invariance leads naturally t~ a geometrical
description of gauge theory that is both highly intuitive and strongly
resembles the familiar geometrical picture of general relativity. By
exploiting this geometrical feature of gauge theory, we can often
find much simpler interpretations of complicated physical phenomena
such as gauge symmetry breaking, which is one of the most important
ingredients of the Weinberg-Salam theory.

This primer is generally organized into three sections. The first
section consisting of Chapters Il through V introduces the concept
of gauge invariance and describes the essential ingredients and
physical assumptions which go into the building of a general gauge
theory. We begin in Chapter II with the original inspiration of
Hermann Weyl and briefly review why gauge theory was re~discovered
three times in different physical contexts before the correct inter-
pretation of gauge invariance was finally understood. In Chapter III,
the geometrical interpretation of gauge symmetry is discussed
and simple arguments are used to motivate and derive the essential
mathematical building blocks of gauge theory. In Chapter IV, the
familiar case of electromagnetism is used as a pedagogical guide
for the construction of the Yang-Mills theory. The canonical Lag-
rangian formalism is introduced and the equations of motion are
derived and discussed. The non-Abelian versions of Maxwell’s
equations are presented in Chapter V and compared with clectro-
magnetism. The unique problems caused by non-inearity and lack
of superposition in Yang-Mills gauge theories are discussed.

The second section of this primer deals with the new descrip-
tion of the electromagnetic, weak and strong forces as gauge theories.
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We begin in chapter VI by briefly reviewing the salient experimental
and theoretical features of the weak nuclear interaction which lead
to the idea of a gauge theory. In chapter VII, we introduce the
general formalism for understanding how gauge symmetry is broken
by the .. ggs mechanism. Several physical examples are discussed in
detail to dlustrate the dynamical mechanism responsible for symmetry
breaking in different applications. In Chapter VIII, we present a
simple introduction to the Weinberg-Salam theory of the unified
weak and electromagnetic interactions, The procedure for unifying

. the weak and electromagnetic gauge symmetry groups is discussed
in detail. Symmetry breaking of the weak interaction is introduced
and the masses of the gauge vector are derived. In chapter IX, we
present a brief introduction to the basic physical ideas in the color
gauge theory of* strong interactions. A simple intuitive argument is
given for the new phenomena ‘of “asyi‘nptotic freedom”. By using
an analogy between the vacuum of color gauge theory and a dielec-’
tric medium, it is shown how the socalled “running coupling con-
starlt” can be obtained.

The third section of this primer provides an introduction to
some.of the new “non-perturbative’ features of gauge theory. In
chapter X, we present a simple study of monopoles and vortices and
explain how ‘their properties can be understood as topological
features of gauge theory.

In the appendix, we briefly summarize some of the key group
theory terminology used in this primer.




CHAPTER 11
THE REDISCOVERY OF GAUGE SYMMETRY

gage invariance has no physical meaning,
but must be satisfied for all observable quan-
tities im order to ensure that the arbitrariness of
A and ¢ does not affect the field strength.

Rohrlich, 1965*

2.1 Introduction

Gauge invariance was recognized only recently as the physical
principle governing the fundamental forces between the elementary
particles. Yet the idea of gauge invariance was first proposed by
Hermann Weyl? in 1919 when the only known elementary particles
were the electron and proton. It required nearly 50 years for gaugs
invariance to be “rediscovered” and its significance to be understood.
The reason for this long hiatus was that Weyl’s physical interpretation
of gauge invariance was shown to be incorrect soon after he had
proposed the theory. Gauge invariance only managed to survive
because it was known to be a symmetry of Maxwell’s equations
and thus became a useful mathematical device for simplifying many
calcuiations in electrodynamics. In view of the present success of
gauge theory, we can say that gauge invariance was a classical case
of a good idea which was discovered long before its time,

In this chapter, we present a brief historical introduction to
the discovery and evolution of gauge theory. The early history of
gauge theory can be divided naturaily into old and new periods
where the dividing line occurs in the 1950’s. In the old period,
we will return to Wey!’s original gauge theory to gain insight into

! Rohrlick, Classical Charged Particles {Addison Wesiey, Reading, Mass., 1965)
. Weyl, Ann. Physik §¢, 101 (1919).
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several key questions. The most important question is what moti-
vated Weyl to propose the idea of gauge invariance as a physical
symmetry? How did he manage to express it in a mathematical
form that has remained almost the same today although the physical
interpretation has altered radically? And, how did the development
of quantum mechanics lead Wey! himself to a rebirth of gauge
theory?

The new period of gauge theory begins with the pioneering
attempt of Yang and Mills® to extend gauge symmetry beyond the
narrow limits of electromagnetism. Here we will review the radically
new interpretation of gauge invariance required by the Yang-Mills
theory and "the reasons for the failure of the original theory. By
comparing the new theory with that of Weyl, we can see that many
of the original ideas of Weyl have been rediscovered and incorporated
into the modern theory.

22 The Einstein Connection

In 1919, only two fundamental forces of nature were thought
to exist — electromagnetism and gravitation. In that same year, a
group of scientists also made the first experimental observation of
starlight bending in the gravitational field of the sun during a total
eclipse*. The brilliant confirmation of Einstein’s General Theory
of Relativity inspired Hermann Weyl to propose his own revolutionary
idea of gauge invariance in 1919. To see how this came about, let us
first briefly recall some basic ideas involved in relativity. :

The fundamental concept underlying both special and general
relativity is. that there are no absolute frames of reference in the
_universe. The physical motion of any system must be described
relative to some arbitrary coordinate frame specified by an observer,
and the laws of physics must be independent of the choice of frame.

In special relativity, one usually defines convenient reference
frames which are called “inertial”, i.e. moving with uniform velocity.

3C. N. Yang and R. L. Mills, Mys:Rev. 96, 191 (1954).
. von Kluber, Vistas'in Avironomy 3, 47 (1960).
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For example, consider a particle which is moving with constant
velocity v with respect to an observer. Let S be the rest frame of
of the observer and S’ be an inertial frame which is moving at the
same velocity as the particle. The observer can either state that
the particle is moving with velocity v in S or that it is at rest in S'.
The important point to te noted from this trivial example is that
the inertial frame S'can always be related by a simple Lorentz
transformation to the the observer’s frame S. The transformation”
depends only on relative velocity between particle and observer,
not on their positions in space-time. The particle and observer
can be infinitesimaliy close together or at opposite ends of the
universe; the Lorentz transformation is still the same. Thus the
Lorentz transformation, or rather the Lorentz symmetry group
of special relativity, is an example of “global” symmetry.

In general relativity, the description of relative motion is much
more complicated because one is dealing with the motion of a
system in a gravitational field. For the sake of illustration, let us
consider the following ‘‘gedanken” exercise for measuring the
motion of a test particle which is moving through a gravitational
field. The measurement is to be performed by a physicist in an ele-
vator. The elevator cable has broken so that the elevator and
physicist are falling freely®. As the particle moves through the field,
the physicist determines its motion with respect to the elevator.
Since both particle and elevator are falling in the same field, the
physicist can describe the particle’s motion as if there were no
gravitational field. The acceleration of the elevator cancels out the
acceleration of the particle due to gravity. This is a simple example
of the principle of equivalence, which follows from the well-known
fact that all bodies accelerate at the same rate in a given gravitational
field (e.g: 9.8 m/sec? on thz surface of the earth).

Let us now compare the physicist in the failing elevator with
the observer in the inertial frame in special relativity. It might
appear that the elevator corresponds to an accelerating or “‘non-
inertial” frame that is analogous to the frame S’ in which the particle

p.G. Bergmann, Introduction to the Theory of Relativity (Prentice-Hill, New York, 1946).



8 An Elementary Primer for Gauge Theory

appeared to be at rest. However, this is not true because a real
gravitational field does not produce the same acceleration at every
point in space. As one moves infinitely far away from the source,
the gravitational field will eventually vanish. Thus, the falling
elevator can only be used to define a reference frame within an
infinitesimally small region where the gravitational field can be
considered to be uniform. Over a finite region, the variation of the
field may be sufficiently large for the acceleration of the particle not
to be completely cancelled.?

We see that an essential difference between special and general
relativity is that a reference frame can only be defined “locally” or
at a single point in a gravitational field. This creates a fundamental
problem. To illustrate the difficulty, let us now suppose that there
are many more physicists in nearby falling elevators. Each physicist
makes an independent measurement so that the path of the particle
in the gravitational field can be determined. How are the individual
measurements to be related to each other? The measurements were
made in separate elevators at different locations in the field. Clearly,
one cannot perform an ordinary Loreniz transformation between the
elevators. If the different elevators were related only by a Lorentz
transformation, the acceleration would have to be independent of
position and the gravitational field could not decrease with distance
from the source.

Einstein solved the problem of relating nearby falling frames
by defining a new mathematical relation known as a “‘connection”.
To understand the meaning of a connection, let us consider a 4-
vector A, which represents some physically measured quantity.
Now suppose that the physicist in the elevator located at x observes
that 4, changes by an amount d4, and a second physicist in a
different elevator at x’ observes a change d4,. How do we relate
the changes dd4, and dA,? In special relativity, the differential
14, is also a vector like A4, itself. Thus, the differential dA, in the

aa strongly varying gravitational field gives rise to “tidal”" forces which can produce some
unusual effect  For example, see the science fiction story Neutron Star by L. Niven (Bal-
lantyne, New York, 1968).
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the elevator at x'is given by the familiar relation

a“
w ==

vooodx' T

dar-1

where, according to the usual convention®, the repeated index u is
summed over the values = 0,1, 2, 3. The simple relation (I - 1)
follows from the fact that the Lorentz transformation between x
and x'is a linear transformation. What happens in general relativity?
We can no longer assume that the transformation from x to x'
is linear. Thus, we must write for dA; the general expression

, dx#
d4, = a p dA + A d(g—,;>
axH ax¢
=5 d4, + A, PR dx’ . (I1-2)

Clearly, the second derivatives d2x*/dx" dx™ will vanish if the x*
are linear functions of the x"

How do we interpret the physical meaning of the extra term
in (I - 2)? Such terms are actually quite familiar in physics. They
occur in ‘“‘curvilinear” coordinate systems. For example, suppose
that two physicists are located on a circular path at the positions
x,y and x" =x +dx, y' =y + dy as shown in Fig. (2-1). The curved
path could be the equator of the earth. Using the familiar curvilinear
coordinates:

X = Rcos ¢, y = Rsing , ar-3)

it can be easily seen that the differentials dx and dy depend on the
coordinates x and y. Now suppose that the physicist at x, y measures

Brpe components of the 4-vector A% = (4%, A) andA, = (4, A) mth A® =-A . Vector
components with upper and lower indices are related by x“ = &y x¥; where g is the
meltric tensor which appears in the definition of the invariant space-nme mterval ds? =
A dx*ax”. The Lompor\ems of Bup BIE £, =8, =g, = 1, &, = —1, and all other
components aie zero.



