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Preface

Almost all engineers get involved with instrumentation and signal processing at
some time in their career. Along with signal processing comes noise—thus, it is
important to understand it and know what to do about it. Noiselike signals are
formally described as random processes, and a considerable amount of theory
about these processes has been developed over the past 40 years. The primary
emphasis here is on linear least-squares filtering. This subject has become
especially important since the recursive form of the filter was introduced by
R. E. Kalman in 1960. Therefore, much of the book is devoted to a topic that is
now known as Kalman filtering. One of my purposes in writing this book was to
bring down the level of this subject and make it available to a wider audience.
Thus, wherever possible, intuitive arguments are used instead of rigorous
proofs, and long derivations are avoided unless they are essential to a full
understanding of the limitations of the theory. There is a strong emphasis on
examples. They reinforce the theory and demonstrate its applicability to real-
life engineering problems.

The study of random processes and linear filtering is no more difficult than
many other subjects that are taught.at the senior level in engineering. Yet, a
hierarchy of prerequisite material is required and, for this reason, the subject
usually gets pushed into the beginning graduate level. In particular, a working
knowledge of linear system theory is needed. This includes both Laplace and
Fourier transform methods and, at least, some acquaintance with state space
methods. The kind of treatment given in a typical senior-level course in linear
control systems is quite adequate for the level of material presented here.
Noise must be described in probabilistic terms, so that at least an elementary
knowledge of probability is required before proceeding on to random process
theory. Since probability is a subject that engineers often miss as undergradu-
ates, Chapter 1 fills this gap. It is a “‘no frills’’ treatment that provides the
essentials needed for the remaining chapters.

Random signals and linear filtering is interdisciplinary, and this book can
be used by all engineers and applied scientists, not just electrical engineers. [
have taught the material to mixed groups, and I found that students who are not
electrical engineers fare just as well as electrical engineers. The amount of
material that can be covered in one semester, of course, depends on the back-
ground of the class. If it is first necessary to bring the group ‘‘up to speed’’ on
probability, then it is difficult to squeeze all of the material into one semester. |
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consider Chapters 8 and 9 to be optional material; they can be omitted if
necessary. Also, some instructors may prefer to skip Chapter 4 on Wiener
filtering and go directly to Kalman filtering. The book is organized so this may
be done with little loss in continuity. In this digital age, Kalman filtering is
probably the more important of the two subjects; consequently, if something
has to give, it should be Wiener filtering. A minimum pedagogical objective
would be to cover Chapters 1-3, 5, 6 and Section 9.1, and do it well. I consider
this to be the most important material in the book from an applications view-
point.

As you can see, the book may be used as a text in many ways, depending
on the background and interests of the class. I hope the level and style will also
appeal to engineers in industry as a self-study reference. Kalman filtering is an
especially important topic with many potential applications, and it is within
reach of any B.S .-level engineer with the usual background in mathematics and
linear systems analysis.

| am grateful to my colleagues and students for their encouragement and
helpful suggestions during the preparation of the manuscript. 1 also thank the
office staff of the Department of Electrical Engineering for their help in typing
classroom notes. 1 especially thank Jeanne Gehm for preparing the final manu-
script.

R. GROVER BROWN
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CHAPTER 1

Probability and
Random Variables

1.1 RANDOM SIGNALS

Nearly everyone has some notion of random or noiselike signals. One has only
to tune an ordinary AM radio away from a station, turn up the volume, and the
result is static, or noise. If one were to look at a strip-chart recording of such a
signal, it would appear to wander on aimlessly with no apparent order in its
amplitude pattern as shown in Fig. 1.1. Signals of this type cannot be described
with explicit mathematical functions such as sine waves, step functions, and
the like. Their description must be put in probabilistic terms. Early investiga-
tors recognized that random signals could be described loosely in terms of their
spectral content, but a rigorous mathematical description of such signals was
not formulated until the 1940s, most notably with the work of Wiener and Rice
(1,2).

Noise is usually unwanted. The additive noise in the radio signal disturbs
our enjoyment of the music or interferes with our understanding of the spoken
word; noise in an electronic navigation system induces position errors that can
be disasterous in critical situations; noise in a digital data transmission system
can cause bit errors with obvious undesirable consequences; and on and on.
Any noise that corrupts the desired signal is bad; it is just a question of how
bad! Even after the designer has done his best to eliminate all the obvious
noise-producing mechanisms, there always seems to be some noise left over
that must be suppressed with more subtle means, such as filtering. To do so
effectively, one must understand noise in quantitative terms.

Probability plays a key role in the description of noiselike signals. Our
treatment of this subject must necessarily be brief and directed toward the
specific needs of subsequent chapters. The scope 1s thus limited in this regard.
We make no apology for this, because many fine books have been written on
probability in the broader sense. Our main objective here is the study of ran-
dom signals and optimal filtering, and we wish to move on to this area as
quickly as possible. Fitst, though, we must at least review the bare essentials of
probability theory.
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Time —=

Figure 1.1. Typical noise waveform.

1.2 INTUITIVE NOTION OF
PROBABILITY

Most engineering and science students have had some acquaintance with the
intuitive concepts of probability. Typically, with the intuitive approach we first
consider all possible outcomes of a chance experiment as being equally likely.
and then the probability of a particular event, say event A, is defined as

Possible outcomes favoring event A
Total possible outcomes

P(A) = (1.2.1
where we read P(A) as “*probability of event A.”” This concept is then expanded
to include the relative-frequency-of-occurrence or statistical viewpoint of prob-
ability. With the relative-frequency concept, we imagine a large number of
trials of some chance experiment and then define probability as the relative
frequency of occurrence of the event in question. Considerations such as what
is meant by ‘‘large’’ and the existence of limits are normally avoided in clemen-
tary treatments. This is for good reason. The idea of limit in a probabilistic
sense is subtle.

Although the older intuitive notions of probability have limitations, they
still play an important role in probability theory. The ratio-of-possible-events
concept is a useful problem-solving tool in many instances. The relative-fre-
quency concept is especially helptul in visualizing the statistical significance of
the results of probability calculations. That is, it provides the necessary tie
between the theory and the physical situation. Two examples that illustrate the
usefulness of these intuitive notions of probability should now prove useful.

Example 1.1 In straight poker, each player is dealt 5 cards face down from
a deck of 52 playing cards. We pose two questions:
(a) What is the probability of being dealt four of a kind, that is, four aces,
four kings, and so forth?
(b) What is the probability of being dealt a straight flush, that is, a continu-
ous sequence of five cards in any suit? W

Sovumion To Question (a) This problem is relatively complicated if you think
in terms of the sequence of chance events that can take place when the cards
are dealt one at a time. Yet the problem is relatively easy when viewed in terms



1.2 INTUITIVE NOTION OF PROBABILITY 3

of the ratio of favorable to total number of outcomes. These are easily counted
in this case. There are only 48 possible hands containing 4 aces; another 48
containing 4 kings; etc. Thus, there are 13 - 48 possible four-of-a-kind hands.
The total number of possible poker hands of any kind is obtained from the
combination formula for ¢*52 things taken 5 at a time’’ (3). This is given by the
binomial coefficient

<52> 52! _52-51-50-49-48

S)CSm o Sic s a3zl - 2% (1.2

Therefore, the probability of being dealt four of a kind is

) 13 - 48 624
P(Four of a kind) = 525855 = 5558 960 —

.00024 (1.2.3)

Sorurion 1o QuesTion (b) Again, the direct itemization of favorable events is
the simplest approach. The possible sequences in each of four suits are:
AKQJ10, KQJ109, . . ., 5432A. (Note. we allow the ace to be counted either
high or low.) Thus, there are 10 possible straight flushes in each suit (including
the royal flush of the suit) giving a total of 40 possible straight flushes. The
probability of a straight flush is, then,

. 40
P(Straight flush) = 37598 960 .000015 (1.2.4

We note in passing that in poker a straight flush wins over four of a kind; and,
rightly so, since it is the rarer of the two hands.

Example 1.2. Craps is a popular gambling game played in casinos through-
out the world (11). The player rolls two dice and plays against the house (i.e.,
the casino). If the first roll is 7 or 11, the player wins immediately; if it is 2, 3 or
12, the player loses immediately. If the first roll results in 4, 5, 6, 8, 9, or 10, the
player continues to roll until either the same number appears, which constitutes
a win, or a 7 appears, which results in the player losing. What is the player’s
probability of winning when throwing the dice?

This example was chosen to illustrate the shortcoming of the direct count-
the-outcomes approach. In this case, one cannot enumerate all the possible
outcomes. For example, if the player’s first roll is a 4, the play continues until
another outcome is reached. Presumably, the rolling could continue on ad
infinitum without a 4 or 7 appearing, which is what is required to terminate the
game. Thus, the direct enumeration approach fails in this situation. On the
other hand, the relative-frequency-of-occurrence approach works quite well.
Table 1.1 shows the relative frequency of occurrence of the various numbers on
the first roll. The numbers in the column labeled “‘probability’” were obtained
by enumerating the 36 possible outcomes and allotting 45 for each outcome that
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Table 1.1 Probabilities in Craps

Relative
Number Result Frequency
of of Subsequent of Winning
First First Probabilities with Various
Throw Probability Throw and Results First Throws
ki3 Lose 0
% Lose 0
P(4 before 7) =} (win)
4 & Continue / ELR
\ P(7 before 4) =3 (lose)
P(5 before 7) = % (win)
5 & Continue — w o k
P(7 before 5) = # (lose)
P(6 before 7) = & (win)
6 & Continue / A&
\ P(7 before 6) = & (lose)
7 & Win %
/ P(8 before 7) = # (win)
8 # Continue A - 1
\ P(7 before 8) = & (lose)
P(9 before 7) = % (win)
9 & Continue — L
\ P(7 before 9) = ¢ (lose)
/ P(10 before 7) = § (win)
10 2 Continue %4
T P(7 before 10) = % (lose)
11 * Win ki
12 P Lose 0

Total probability of winning = ## ~ .4929

yields a sum corresponding to the number in the first column. For example, a 4
may be obtained with the combinations (1,3), (2,2), or (1,3). For the cases
where the game continues after the first throw, the subsequent probabilities
were obtained simply by observing the relative frequency of occurrence of the
numbers involved. For example, a 7 is twice as likely as a 4. Thus, the relative
frequency of rolling a 7 before a 4 should be twice that of *‘4 before 7,”’ and the
respective probabilities are § and 4. The total probability of winning with a 4 on
the first throw was reasoned as follows. A 4 only appears on the first roll # of
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the time: and, of this fraction, only % of the time will this result in an ultimate
win. Thus, the relative frequency of winning via this route is the product of
£ - 3. Admittedly, this line of reasoning is quite intuitive, but that is the very
nature of the relative-frequency-of-occurrence approach to probability.

For the benefit of those who like to gamble, it should be noted that craps is
a very close game. The edge in favor of the house is only about 1§ percent.
(Also see Problem 1.7.) W

1.3 AXIOMATIC
PROBABILITY

It should be apparent that the intuitive concepts of probability have their limita-
tions. The ratio-of-outcomes approach requires the equal-likelihood assump-
tion for all outcomes. This may fit many situations, but often we wish to
consider ‘‘unfair’’ chance situations as well as ‘‘fair’” ones. Also, as demon-
strated in Example 1.2, there are many problems for which all possible out-
comes simply cannot be enumerated. The relative-frequency approach is intui-
tive by its very nature. Intuition should never be ignored; but, on the other
hand, it can lead one astray in complex situations. For these reasons, the
axiomatic formulation of probability theory is now almost universally favored
among both applied and theoretical scholars in this area. As we would expect,
axiomatic probability is compatible with the older, more heuristic probability
theory.

Axiomatic probability begins with the concept of a sample space. We first
imagine a conceptual chance experiment. The sample space is the set of all
possible outcomes of this experiment. The individual outcomes are called ele-
ments or points in the sample space. We denote the sample space as S and its
set of elements as {s,, s2, 53, - . .}. The number of points in the sample space
may be finite, countably infinite, or simply infinite, depending on the experi-
ment under consideration. A few examples of sample spaces should be helpful
at this point.

Example 1.3 The experiment: Make a single draw from a deck of 52 play-
ing cards. Since there are 52 possible outcomes, the sample space contains 52
discrete points. If we wished, we could enumerate them as Ace of Clubs, King
of Clubs, Queen of Clubs, and so forth. Note that the points of the sample space
in this case are ‘“‘things,”” not numbers. ]

Example 1.4 The experiment: Two fair dice are thrown and the number of
dots on the top of each is observed. There are 36 discrete outcomes that can be
enumerated as (1,1), (1,2), (1,3), . . ., (6,5), (6,6). The first number in paren-
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theses identifies the number of dots on die 1 and the second is the number on
die 2. Thus, 36 distinct 2-tuples describe the possible outcomes. and our sample
space contains 36 points or elements. Note that the points in this sample space
retain the identity of each individual die and the number of dots shown on its
top face. W

Example 1.5 The experiment: Two fair dice are thrown and the sum of the
number of dots is observed. In this experiment, we do not wish to retain the
identity of the numbers on each die; only the sum is of interest. Therefore, it
would be perfectly proper to say the possible outcomes of the experiment are
{2, 3, 4,5, 6,7, 8 9, 10, 11, 12}. Thus, the sample space would contain 11
discrete elements. From this and the preceding example, it can be seen that we
have some discretion in how we define the sample space corresponding to a
certain experiment. It depends to some extent on what we wish to observe. If
certain details of the experiment are not of interest, they often may be sup-
pressed with some resultant simplification. However, once we agree on what
items are to be grouped together and called outcomes, the sample space must
include all the defined outcomes; and, similarly, the result of an experiment
must always yield one of the defined outcomes. W

Example 1.6 The experiment: A dart is thrown at a target and the location
of the hit is observed. In this experiment we imagine the random mechanisms
affecting the throw are such that we get a continuous spread of data centered
around the bull’s-eye when the experiment is repeated over and over. In this
case, even if we bound the hit locations within a certain region determined by
reasonableness, we still cannot enumerate all possible hit locations. Thus, we
have an infinite number of points in our sample space in this example. Even
though we cannot enumerate the points one by one, they are, of course, identifi-
able in terms of either rectangular or polar coordinates. W

It should be noted that elements of a sample space must always be muru-
ally exclusive or disjoint. On a given trial, the occurrence of one excludes the
occurrence of another. There is no overlap of points in a sample space.

In axiomatic probability, the term event has special meaning and should
not be used interchangably with outcome. An event is a special subset of the
sample space S. We usually wish to consider various events defined on a
sample space, and they will be denoted with uppercase letters such as A, B, C,

. .,or perhaps A;, A,, . . ., etc. Also, we will have occasion to consider the
set of operations of union, intersection, and complement of our defined events.
Thus, we must be careful in our definition of events to make the set sufficiently
complete such that these set operations also yield properly defined events. In
discrete problems, this can always be done by defining the set of events under
consideration to be all possible subsets of the sample space S. We will tacitly
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assume that the null set is a subset of every set, and that every set is a subset of
itself.
One other comment about events is in order before proceeding to the basic
axioms of probability. The event A is said to occur if any point in A occurs.
The three axioms of probability may now be stated. Let S be the sample
space and A be any event defined on the sample space. The first two axioms are

Axiom 1: P(A) =0 (1.3.1D)
Axiom 2: PS) =1 (1.3.2)
Now, let A|, A,, As, . . . be mutually exclusive (disjoint) events defined on §.

The sequence may be finite or countably infinite. The third axiom is then

Axiom 3: PA T UAUAU. . )

= P(A)) + P(A)) + P(A3) + - - (1.3.3)

Axiom 1 simply says that the probability of an event cannot be negative.
This certainly conforms to the relative-frequency-of-occurrence concept of
probability. Axiom 2 says that the event §, which includes all possible out-
comes, must have a probability of unity. It is sometimes called the certain
event. The first two axioms are obviously necessary if axiomatic probability is
to be compatible with the older relative-frequency probability theory. The third
axiom is not quite so obvious, perhaps, and it simply must be assumed. In
words, it says that when we have nonoverlapping (disjoint) events, the proba-
bility of the union of these events is the sum of the probabilities of the individ-
ual events. If this were not so, one could easily think of counterexamples that
would not be compatible with the relative-frequency concept. This would be
most undesirable.

We now recapitulate. There are three essential ingredients in the formal
approach to probability. First, a sample space must be defined that includes all
possible outcomes of our conceptual experiment. We have some discretion in
what we call outcomes, but caution is in order here. The outcomes must be
disjoint and all-inclusive such that P(S) = 1. Second, we must carefully define a
set of events on the sample space, and the set must be closed such that the
operations of union, intersection, and complement also yield events in the set.
Finally, we must assign probabilities to all events in accordance with the basic
axioms of probability. In physical problems, this assignment is chosen to be
compatible with what we feel to be reasonable in terms of relative frequency of
occurrence of the events. If the sample space S contains a finite number of
elements, the probability assignment is usually made directly on the elements
of S. They are, of course, elementary events themselves. This, along with
Axiom 3, then indirectly assigns a probability to all other events defined on the
sample space. However, if the sample space consists of an infinite ‘‘smear’’ of
points, the probability assignment must be made on events and not on points in
the sample space. This will be illustrated later in Example 1.8.
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Once we have specified the sample space, the set of events, and the proba-
bilities associated with the events, we have what is known as a probability
space. This provides the theoretical structure for the formal solution of a wide
variety of probability problems.

Example 1.7 Consider a single throw of two dice, and let us say we are
only interested in the sum of the dots that appear on the top faces. This chance
situation fits many games that are played with dice. In this case, we will define
our sample space to be

§=142,3,4561728,9 10, 11, 12}

and it is seen to contain 11 discrete points. Next, we define the set of possible
events to be all subsets of S, including the null set and S itself. Note that the
elements of S are elementary events, and they are disjoint, as they should be.
Also, P(S) = 1. Finally, we need to assign probabilities to the events. This
could be done arbitrarily (within the constraints imposed by the axioms of
probability), but in this case we want the results of our formal analysis to
coincide with the relative-frequency approach. Therefore, we will assign prob-
abilities to the elements in accordance with Table 1.2, which, in turn, indirectly
specifies probabilities for all other events defined on S. We now have a properly
defined probability space, and we can pose a variety of questions relative to the
single throw of two dice.

Suppose we ask: What is the probability of throwing eithera 7 oran 11?
From Axiom 3, and noting that **7 or 11" is the equivalent of saying **7 U 11,”
we have

2 2
P orll)=—6—+—=§ (1.3.4)

Table 1.2 Probabilities for
Two-Dice Exam-

ple
Sum of Two Assigned
Dice Probability
2 Lo
3 o3
4 ki
5 %
6 %5
7 £
8 kY
9 &
10 £
i1 %
12 b




1.3 AXIOMATIC PROBABILITY 9

Event A ANRB

Event B

Sample
~T  space

Figure 1.2. Venn diagram for two events A and B.

Next, suppose we ask: What is the probability of not throwing 2, 3, or 12?
This calls for the complement of event ‘2 or 3 or 12”° which is the set
{4,5,6,7,8,9,10,11}. Recall that we say the event occurs if any element in the set
occurs. Therefore, again using Axiom 3, we have

3444546+5+4+3+2
36

P(Not throwing 2, 3, or 12) =
(1.3.5)
8

9

Suppose we now pose the further question: What is the probability that
two **4s”’ are thrown? In our definition of the sample space, we suppressed the
identity of the individual dice, so this simply is not a proper question for the
probability space, as defined. This example will be continued, but first we
digress for a moment to consider intersection of events. W

In addition to the set operations of union and complementation, the opera-
tion of intersection is also useful in probability theory. The intersection of two
events A and B is the event containing points that are common to both A and B.
This is illustrated in Fig. 1.2 with what is sometimes called a Venn diagram.
The points lying within the heavy contour comprise the union of A and B,
denoted as A U B or ““A or B.”” The points within the shaded region are the
event “‘A intersection B,”” which is denoted A N B, or sometimes just ‘A and
B.”’* The following relationship should be apparent just from the geometry of

* In many references, the notation for *“A union B’" is ‘A + B,"" and A intersection B’ is
shortened to just **AB.” We will be proceeding to the study of random variables shortly. and then
the chance occurrences will be related to real numbers, not “‘things.”” Thus, in order to avoid
confusion, we will stay with the more cumbersome notation of U and N for set operations, and
reserve X + Y and XY to mean the usual arithmetic operations on real variables.



