Data Structures and
Programming
Techniques

HERMAN A. MAURER

Data Structures and
Programming Techniques

HERMAN A. MAURER
University of Karlsruhe

Translated by
Camille C. Price
Stephen F. Austin State University

Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632

Litwary of Congress Cataloging in Publication Data

Maurer, Hermatin A 1941-
Data structures and programming techniques.

Sranslation of Datenstrukturen und Programmierver-
" fabren.
Bibliography: P.
Includes index.
1. Electronic digital computers—Programming.
2. Data structures (Computer science) I. Title,
QA76.6 M38313 001.6°42 76-22758
ISBN 0-13-197038-0

A translation of Dr. Maurer’s

Datenstrukturen und Programmierverfahren

© by B. G. Teubner, Stuttgart.

The sole authorized English translation of

the original German edition published in

the series Leitfiden der Angewandten

Mathematik und Mechanik, edited by Dr. Gortler,

@© 1977 by Prentice-Hall, Inc.
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book

may be reproduced in any form or by any means
without permission in writing

from the publisher.

10 98 76 543 21

Printed in the United States of America

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA Pry. LIMITED, Sydney
PrENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LiMITED, New Delhi
PRrRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST AsiA Pre. LTD., Singapore
WHITEHALL Books LIMITED, Wellington, New Zealand

SRR s B L A

how

. -'/i . e

Preface

This book is a translation from the German of a book which was developed from a
course conducted by Professor Dr. H. Maurer at the University of Karlsruhe. The
lecture notes of the course were thoroughly revised and expanded, in collaboration
with H. W. Six, into the final form which was published as Datenstrukturen wnd
Programmierverfahren.

In this book, techniques will be presented which allow data to be organized in ways
suited to problem solving using a digital computer. Such techniques can contribute to
the design of efficient, well-arranged programs and therefore ought to be thoroughly
familiar to every computer scientist.

The book is self-contained and, except for an acquaintance with some program-
ming language, no specific knowledge of mathematics or computer science is
presupposed.

A few remarks are in order on the notational conventions followed in the book.
The notations introduced in Sections 1.2 and 1.3 and used consistently thereafter per-

“mit a uniform and precise description of the subject matter. The presentation is, how-

ever, sufficiently straight-forward so that the book can be used by the casual reader
without requiring a careful study of the notational scheme.

Program segments are used throughout the book to provide a description of the
algorithms and to illustrate the manipulation of data structures. The use of an assem-

. bler language would allow immediate access to the individual memory locations,

however because of the unavailability of a widely-known standard assembler language,
and for reasons of convenience, a high-level language is used instead. A very simple
subset of the PL/I language—actually only a small extension of the Fortran language—
is used so that a reader who is only slightly familiar with programming languages can
easily follow the programs, The author wishes to thank Miss S. Reiniger for testing
the PL/I programs.

Nacogdoches, Texas Camille C. Price -

vii

- Contents

Preface vii

Introduction 7

1. A Model for the Manipulation of Data Structures 2

1.1 Mathematical Preliminaries 2
1.2 Data Structures and Ways of Representing Data Structures 5
1.3 Methods of Storing Data Structures 9

1.4 Programming Considerations 13

2. Lists 17

2.1 Linear Lists 17

2.2 Stacks and Queues 27

2.3 Stacks and Procedures 45

2.4 Compressed, Indexed, and Scatter Storage 52
2.5 Multidimensional Arrays 63

2.6° Merging and Sorting 76

2.7 Searching Linear Lists 91

vi CONTENTS

3. Trees 103

3.1 Trees and Methods of Storing Trees 103
3.2 Binary Trees 116 ‘

3.3 Tree Searching 130

3.4. Searching Solution Trees 156

3.5 Trees and Backus Systems 173

4. Complex Data Structures 185

4.1 Graphs and Lists 183
4.2 Multilinked Structures and Composite Inquiries 203

Index of Symbols 215

Bibliography 217
Subject Index 221

*

i]

P

Intfroduction

B

The efficiency, clarity, and complexity of a program for the solution of a given prob-
lem depends substantially on the organization imposed on the data to be used, i.e.,
on the selected data structure. It is the purpose of this book to present the most:
important data structures, to. explain under what conditions which data structures
can be used most effectively, and to indicate which programming techniques. are
most desirable for working with a particular data structure. : ,

In the study of data structures, it is necessary not only to define the concept of
a data structure itself but also to state how the data structure can be stored and.
manipulated. With this purpose in mind, several considerations are appropriate.
First, using the general definition of the concept of a data structure, a method will
be given for representing a data structure graphically. Then a model of computer
memory will be introduced, along with a way of graphically representing the memory
locations. With this foundation established, methods of storing data structures can’
be presented. The actual descriptions of algorithms for manipulating data structures
stored in. a computer are given using PL/I programs in which the memory locations.
in the computer memory model are realized using declarations of PL/I variablés.

The general foundations referred to are the subject of Chapter 1. Chapter 2 is
dedicated to common and simple data structures known as lists. In Chapter 3 the
particularly important tree structures are emphasized, a topic often treated too lightly.
Then'in Chapter 4 two types of complex data structures are introduced.

A Model for the
Manipulation of
] Data Structures

Section 1.1 Mathematical Preliminaries

Definition 1.1.1 (Sets and Set Operations) If a set M consists of the n elements
a,,4d,,...,a, where n >0, then the set is said to be finite and is written M =
{ay, a5, ..., a,}. If all the elements of the set M have property P, then M may be
written as {x|x has property P}. The set containing no elements is called the empty
set and is denoted by ¥. A set that is not finite is said to be infinite.

If M is a set, and a is an element of M, then we writea € M; if a is not an element
of M, we indicate this by a ¢ M. If M and N are sets, then M is a subset of N, written
M < N or N 2 M, if every element of M is also an element of N. The set M is
called a proper subset of N, written M < N or N o M, if M = N and there is at
least one element in N that is not an element of M. Two sets M and N are said to be
equal, written M = N, if M = N and N = M.

The union, intersection, and difference of two sets M and N, written M U N,
M N N, and M — N, respectively, are defined as follows:

M U N = {x|x & M or x € N or both}
M N N = {x|x =~ Mand x € N}
M — N = {x|x = Mand x ¢ N}

Two sets are said to be disjojnt if their intersection is empty. If M is a set, then
the sequence M,, M,, ..., M, of pairwise disjoint sets is called a partitioning of M
fM=M, oM, -+ UM,

Definition 1.1.2 (Tuples and Sequences) An n-tuple A of elements a,, a,, ..., a,,
where n 2> 0, is a sequence of elements of length n and is written either as A =
(a,.a,,...,a,) or as A = a,,a,,...,3a, Suppose A = (a,,a,,...,a,) iS an n-

2

Sec. 1.1 MATHEMATICAL PRELIMINARIES 3

tluplc; then if b = a,, we call b the ith component of A, where i is the position of b
in A. We write this symbolically as z,b = i or simply zb = i.

The notational conventions for sets are often applied to sequences. In particular,
we speak of an empty sequence (a null-tuple) & ; we writea € A ora ¢ A, depending
on whether a is or is not in the sequence A; and we say two sequences A and B are
disjoint if {x|x € A} N {x|x € B} = @. A sequence B is a subsequence of a se-
quence A if B is formed by the removal of n elements from A, where n >> 0. (Thus,
3,4,2 is a subsequence of 6,3,0,12,4,2,7 but not of 6, 4,0,0, 12, 3,7, 2). Two
sequences A and B are equal, written A = B, if A is a subsequence of B and vice
versa.

Definition 1.1.3 (Cartesian Products and Relations) The Cartesian product of two
sets M and N, written M x N, is defined to be a set of ordered pairs as follows:

Mx N={xy)ixe Mandy € N}.

If M and N are sets, then every subset of M x N is called a relation onM x N
(oron M if M = N).

Let r be a relation on M. If (a, b) € r, then a is called the predecessor of b, and b
is the successor of a, relative to r. To specify that (a,b) € r, we write arb; and if
(a,b) ¢ r, we write arb.

The domain and range of a relation r are written symbolically domain (r) and
range (r) and are defined as:

domain (r) = {x|(x, y) € 1}
and
range (r) = {y|(x, y) € r}.

The inverse of a relation r, written r-1, is defined by
= {ly, x){(x,y) € 1}.

A relation r on M is called reflexive if, for every a € M, (a, a) € r. The relation is
called antireflexive if (a, a) € r does not hold for any a € M. A relation is sym-
metric if (a, b) € r whenever (b, a) € r; a relation is transitive if (a, ¢) € r whenever
(a,b) € rand (b,c) € 1.

Definition 1.1.4 (Basis of a Transitive Relation) Let r be a transitive relation
on M, and b < r. The relation b is called a basis of r and r is called the rransitive hull
of b if the following holds:

r = {(x, y)| there are elements x,, x, X2, ..., X, in M,
- where n > 1, such that (a) x, = x, (b) x, = y,
and (c) (xi_,x;) € bfori=1,2,..., nj.

Definition 1.1.5 (Equivalence Relations and Equivalence Classes) A relation
ron M is called an equivalence relation if t is reflexive, symmetric, and transitive.
If r is an equivalence relation and (a, b) € r, then a and b are said to be equivalent.

4 A MODEL FOR THE MANIPULATION OF DATA STRUCTURES Ch. 1

If M is a set with equivalance relation r, then M is the union of pairwise disjoint sets.
These sets are called equivalence classes.

Definition 1.1.6 (Partial Ordering and Topological Sorting) A relation r on M
is called a partial ordering if r is transitive and antireflexive. If A = a,, a,,...,a,
is a sequence of elements of M and if (a,, a;)) € r for i < j, then A is topologically
sorted relative to r.

Note: Tt should be observed that in every finite set with partial ordering r there
exists at least one element having no predecessor and at least one element having no
SUCCessor.

. .
Definition 1.1.7 (Total Ordering and Sorting) A relation r on M is a total ordering
if it is transitive and if conditions a and b below are satisfied:

(a) If (a,b) e rand (b,a) € r,thena = b.
(b) For any two elements a and b, either (a, b) € r or (b, a) € r, or both.

A sequence A = a,, a,,...,a, of elements from M is sorted or ordered (relative
tor)if(a,a,.,) erforl <in—1.

Definition 1.1.8 (Minimum and Maximum) If M is a set of numbers, then if
there exists a smallest number in M, it is called the minimum of M and is de-
noted min (M). Likewise max (M) denotes the maximum of M and max (M) =
—min {—x|x € M}.

Definition 1.1.9 (Function) A relation f on M X N is called a function from M to
N, written symbolically f: M - N, if for every a € M there is exactly one b € N
such that (a, b) € f. Instead of (a, b) € f we often write f(a) = b or simply fa = b.
"A function f: M — N is called one-to-one if whenever a 3 b, it follows that f(a) 7=
{(b). :

Exercises

1.1.1 Let r be the relation:
r={(1,2),(2,3),3,5, 3,4, (1,3), (1,4, (249, 2,5, (1, 5}
(a) Show that r is transitive.

(b) Isr an equivalence relation?
(c) Determine a basis b on r with four elements.

1.1.2 Letr be a transitive relation with basis b:
b={(1,4), (2,5), (5,8), (0, 3), 3, 6), (6,9), (4, 1), (8, 2), (9, 0)}.

(2) Isr an equivalence relation?
(b) Determine the range of r.

Sec. 1.2 DATA STRUCTURES AND WAYS OF REPRESENTING DATA STRUCTURES 5

1.1.3 Let r be the relation:)
r=1{(3,1),3,2),4,6),(4,7),(54,(5,6),(57,(6,N}on M ={1,2,3,4,5,6,7}

(a) Show that r is a partial ordering.
(b) Determine a topologically sorted sequence of elements of M.

Section 1.2 Data Structures and Ways of
Representing Data Structures

Computers are used extensively in the processing of collections of data. A data
collection may be thought of as a collection of data elements or nodes that have n-
tuples of character strings as values. The data elements of a data coliection can be
analyzed and altered in various ways using a computer. '

Some typical examples of values of nodes are triples of character strings, represent-
ing the name, quantity on hand, and identification number of a part of a piece of
machinery: pairs of numbers defining the arguments and corres'ponding function
values of a certain function; 4-tuples of character strings indicating the name, address,
bank affiliation, and serial number of a contractor; and so on. '

It is often of interest to know how the nodes in a data collection are related to one
another. For example, where nodes represent parts of a piece of machinery, it may be
meaningful to indicate that one part is a constituent part of another or that all parts
with certain part numbers are to be handled together when reordering is done. Where
nodes define function values, each nodesmay be associated with the node having
the next largest function value. If the nodes represent contractors, it may be useful to
indicate that certain ones are working in the same city.

Connections between nodés of a data collection may be indicated by using rela-
tions. The combination of nodes and relations is called a data sructare.

i

Definition 1.2.1 (Data Structure) A data structure B is a pair B = (K, R), where

K is a finite set of nodes and R is a finite set of relations on K. The value! of a node

k & K is denoted by wk and is an-n-tuple, n > 0, of character strings; wk denotes

the ith component of the (value of the) node k. This is expressed symbolically as”
ok = (wk, ok, ..., wk).

Definition 1.2.2 (Notational Conventions) Let B = (K, R) be a data structure,
-with r € R a relation and k, k’ nodes. If (k, k') € r, then we say that k' isa successor
of k, k is a predecessor of k', k and k’ are consecutive, and k points to k’ (all relative to
r). If there is no node k' such that (k,k’) € r, then k is called an and node (relative
to r); if there is no node k’ such that (k’, k) € r, then k is called a start.node (relative
to r). Otherwise k is. an inner node. If k is a node and wk = & (i.e., X is a null-tuple),
then k is called a pointer. A pointer which points to a start node is calléd a start pointer

!Where no misunderstanding is likely, no distinction will be made between amode and the value
of the node. '

-6 . A MODEL FOR THE MANIPULATION OF DATA STRUCTURES Ch. 1

and one which points to an end node is called an end pointer. A data structure B is
said to be manipulated if the value of a node is determined or changed or if a node
is added to or removed from B.

Definition 1.2.3 (Graphical Representation of Data Structures) Let B = (K, R)
be a data structure. A graphical representation of B is obtained as follows. For
“every node k € K, a figure is drawn: a circle if wk = & and a rectangle containing
wk otherwise. If a node k points to another node k’ (relative to a relation r), then the
figures corresponding to k and k’ are connected by a directed line segment. For dif-
ferent relations we choose different types of line segments. Sometimes it is useful to
‘assign names to the figures corresponding to the nodes; such names are written
outside the figures.

Example 1.2.1 The data structure B = (K, R) with 10 nodes K = {k,, k,, ...,
k;,} and two relations R = {T, N}, where

wk, = (machine, 40, 612)

wk, = (motor, 2,.802)

wk; == (block, 3, 105)

wk, = (filter, 2, 117)

‘wks = (tank, 10, 118)

wks = (brakes, 60, 230)

wk, = (ignition, 30, 408)

wks = (housing, 17, 507)

wk, = (frame, 40, 230)

wk,, = (plates, 1, 702)

T = {(kh kz), (kl’ k8)9 (kz, k3)5 (k29k7)’ (kS’ k4)’ (k3> ks), (k37 ks),
(k87 kD)’ (kﬂ’ klO)}

N = {(kyq, ko), (K, k3), (ks, k3))

is displayed graphically in Fig. 1.2.1. Since, for example, (k3, ks) € Tbut (ky, ky) ¢
T, there is a line, marked with T, from node k; to node k; but no line from k; to ks.

The given data structure can be thought of as a rough description of a certain
machine. Each node k corresponds to a particular part: w,k is understood to be the
name, w,k is the number of parts on hand, and w,k represents the part identification
number. The relation T explains the composition of the piece of equipment, namely
that it consists of two main components: the motor and the housing, the latter con-
sisting of the frame and the plates, and so on. The relation N applies to the nodes k,
where w,k < 3, that is, the parts with small quantities on hand. Note that ok < w,k,
where k is a predecessor of k’ relative to N.

Sec. 1.2 DATA STRUCTURES AND WAYS OF REPRESENTING DATA STRUCTURES 7

K,
Machine,
© 40,
612
ko, kg
Housing,
17,
507
kg kip
Biock, Ignition, ‘| Frame, Plates,
| 105 408 230) 702
i
! i
i |
| T |
| i
' I
: kg kg Kg |
I
: Filter, Tank, Brakes, !
p— 2, 10, 60, I
17 118 230 !
) ;
I |
[|
\ i

Figure 1.2.1

Figure 1.2.2 differs from Fig. 1.2.1 in the addition of a start pointer st (relative
to T) and a start pointer sn (relative to N). This data structure describes not only the
nodes ky, ks, ..., ko but also the nodes st and sn, where st = @wsn = & ; in addi-
tion to the relations T and N, it also shows the relations p; = {(st, ky)} and py =
{(Sn’ klo)}'

In actual practice, the description of a piece of equipment such as the one just
discussed would necessitate a significantly more complicated data structure; not
only would the number of nodes be greater and the value of each node consist of more
components, but also additional relations to relate, for example, price and terms of
a contract, would be of interest. It is sometimes more convenient to describe a situa-
tion using several data structures, each having only a few relations, instead of one

8 A MODEL FOR THE MANIPULATION OF DATA STRUCTURES

st

Py

Machine,
40,
612

Housing,
17,
507
Block, Ignition, Frame, Plates,
3, 30, 40, 1,
X 105 408 230 702

! T
! 1
! i
! |
! |
t |

)) Py
!)
| I
|
: Filter, Tank, Brakes, l
o2 10, 60, |
17 118 230 :
I i
1
1
!

Figure 1.2.2

sNn

Ch. 1

data structure having many relations. With-this'in mind, our further investigation of

data structures will be restricted to those with a small number of relations.

Remarks

There is no standard definition for the notion of a data structure. The definition
given here, using relations, is one of several in which relations play an important role.

Sec. 1.3 METHODS OF STORING DATA STRUCTURES 9

) 13
Exercises ‘

1.2.1 Graphically represent the data structure B = (K, R) with nine nodes k;
(1 <i < 9) and three relations R = {N, T, Z}, where wk, = i.

N = {(ky, ky), (ky, ko), (ky, ks), (ks, ki), (ks, ks), (ke ks), (Ko, ky)}
T == {(kh k5)7 (kl: kl), (k7§ k8)9 (kla kl)a (ks’ k9)’ (kSs k'r)}
Z={(, k)i +j=7).

1.2.2 Determine all start nodes ‘and end nodes relative to relations N, T, and Z in
Exercise 1.2.1.

Section 1.3 Methods of Storing Data Structures

When considering the actual storage and manipulation of data structures using
computers, it is useful to begin by constructing a theoretical model for the storage of
the data structure. Each memory location in such a model may be visualized as
consisting of two parts, the data field and the pointer field. The data field serves to
store the value of a node k. A pointer field can be used in the realization of a relation
1, that is, to indicate the memory addresses of all those locations containing successors
of k (relative to r). An indicator, which can be either a 0 or a 1, may be associated
with every pointer field to give additional information about the data structure.

Definition 1.3.1 (Memory) A memory consists of a finite number q of memory
locations, numbered from 1 to q. The location of a memory cell Z is called the address
and is denoted symbolically with az. Conversely, if a memory location with address
t is denoted by ot, then aot =t and oz = 2. A memory location z consists of
a data field, whose value is denoted dz, and m > O pointer fields. The ith pointer field
of a location z defines a value, denoted p,z, and an indicator, denoted 7,z. Frequently
the indicator is 0 and need not be explicitly expressed. B

"The value? of a pointer field p;z is a t-tuple, t >> 1, of whole numbers. The jth
component of p;z is denoted by p,z. The value of a data field §z is an n-tuple, n > 0,
of character strings, where the jth component is denoted by §z. Unless otherwise
specifically stated, the value of a pointer field p,z consists of only one component, and
pu = pi. If only one pointer field p, is being considered, then we simply write p.

Definition 1.3.2 (Storing a Data Structure) A data structure B = (K, R) is stored
by uniquely associating every k € K with a memory location z, where dz = wk.
The memory location z associated with a node k is denoted by ¢k, and ¢k = z.

Definition 1.3.3 (Notational Conventions) Two memory locations z and z’ are
consecutive if az’ = 1 4+ az. A memory location z is to the left of z’ and z’ is to the

2Where no misunderstanding is likely, no distinction will be made between a pointer field and its
value or between a pointer component and its value,

10 . A MODEL FOR THE MANIPULATION OF DATA STRUCTURES Ch.1

right of z if @z << az’. A set M of consecutive memory locations is called a storage
domain. The first location z in a storage domain M, az = min {az” |z’ € M}, is called
the left end of the storage domain; the /ast location z’ of the storage domain, az' =
max {z"'|2"" € M}, is the right end of the storage domain. A memory location z is
said to point to a memory location z’ (with respect to the ith pointer field or the data
field) if the address «z’ of 2’ appears in the ith pointer field or, respectively, the data
field of z. If B = (K, R) is a stored data structure and r is a relation, then the nodes
K are said to be stored in the memory locations ¢K = {¢k|k € K}, and the terms
node and memory location may be used interchangeably as long as no misunder-
standing is possible, For example, the address of a node k, symbolically «k, is the
address of the memory location corresponding to the node k; the value of the ith
pointer field of a node k is written symbolically as either pik or plk. Start locations,
end locations, and inner locations (relative to a relation r) correspond to start nodes,
erd nodes, and inner nodes, respectively.

Definition 1.3.2 is only concerned with storing the values of nodes, We must also
consider the realization of the relations; this is done in one of two ways: sequentially
or linked.

Definition 1.3.4 (Sequential Realization of a Relation) Let B = (K,R) be a
stored data structure. A relation r is said to be realized sequentially (with step size s)
if, for every pair of nodes (k, k') € r, ak’ = ak -+ s holds. In $equential realization
with step size s, consecutive nodes are stored in locations whose addresses differ from
one another by s. The step size is usually 1 and, in that case, need not be expressed
explicitly. '

Definition 1.3.56 (Linked Realization of a Relation) Let B = (K, R) be a stored
data structure. A relation r is realized as a Vinked structure (relative to the ith pointer
field) if, for every pair of nodes (k, K)erak e pk holds. If ek’ = p;k for every
pair of nodes (k, k') € r, then the linking is called /inear. In the linked realization of
a relation, the ith pointer field of a node k gives the addresses of all successors of k.

If a relation r-is sequentially realized, then we say that the corresponding nodes
are sequentially stored. If a relation r is realized as a linked structure, then we say
that the corresponding nodes are linked in the memory.

Definition 1.3.6 (Graphicail Representation of Memory Locations) Let Z be a set
of memory locations. A graphical representation of Z may be obtained as follows:
For every z € Z with m pointer fields, a rectangle is drawn that is divided from
left to right into m + 2 segments. The first segment contains az; the second con-
tains dz; and the remaining m segments contginthe values of the pointer fields 'p,z,
P22, ..., pur. If an indicator 7,2 is not equal to zero, then a star is attached to the
corresponding pointer field. If, in a rectangular segment G of a memory location
z, the address az’ of another memory location appears, then G- can be connected to
the first rectangular segment of memory location z' with a directed line.

For simplification, some of the entries in the rectangular segments corresponding

Sec. 1.3 : METHODS OF STORING DATA STRUCTURES I1

to 0z, 6z, or pyz,..., p,z will occasionally be omitted. In some cases, it will be
appropriate to supply names to the rectangles or rectangular segments corresponding
to the memory locations. These names will be written outside the rectangles or rec-
tangular segments.

é N .
Example 1.3.1 A possible method of storing the data structure B = (K, R) :
five nodes- I '={k,, k;, ks, ky, k;} and the relation r = {(k,, k,), (k,, ks), (ks, k,),
(kys ks)}), ok, = THAT, wk, = THE, wk; = THIS, wk, = US, wk; = WE, is
illustrated in Fig. 1.3.1. The relation r is realized as a linked structure since pk, = ak,,
Pk, = ak;, pk; = ak,, pk, = ak,. Note that pk; is not used and is set to 0,

P e N
K, Ky H k, kg Ky
([l el Gl (Il (el
) . r T ‘ r
! N \
M e e e e e e e / ~ e e /7
Figure 1.3.1

The words wk",mkz, wk;, wk,, ok, are alphabetically ordered, in the sense that
each memory location z points to that memory location z’ which contains the word
which is next in alphabetical order.

Example 1.3.2 Three possible methods of storing the data structure in Fig. 1.2.1
are presented in Fig. 1.3.2, 1.3.3, and 1.3.4. In the method shown in Fig. 1.3.2, neither
of the relations T and N is realized. In Fig. 1.3.3, both relations T and N are shown

Machine, Moator, Housing,
10 40, " 2, 12 17,
612, 802 507
Block, ignition, Frame,
3 3, 14 30, 15 40,
105 408 230
Plates, Filter, Tank,
16 L1, 17 2, 18 10,
702 117 118
Brakes,
19 60,
230

Figure 1.3.2

