

USING
dBASE II

Carl Townsend

Osborne/MecGraw-Hill
Berkeley, California

Published by
Osborne/McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the U.S.A.,
please write to OsborneMecGraw-Hill at the above address.

dBASE is a registered trademark of Ashton-Tate.

ZIP is a trademark of Ashton-Tate.

QUICKSCREEN, dUTIL, and QUICKCODE are trademarks of Fox & Geller.
WordStar is a trademark of Micropro International.

USING dBASE II®

Copyright © 1984 by McGraw-Hill. All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced
or distributed in any form or by any means, or stored in a data base or retrieval system, without the
prior written permission of the publisher, with the exception that the program listings may be
entered, stored, and executed in a computer system, but they may not be reproduced for publication,

34567890 DODO 8987654
ISBN 0-88134-108-8

Paul Hoffman, Technical Editor
Ted Gartner, Copy Editor
Richard Cash, Text Design

Yashi Okita, Caver Design

Jan Benes, Technical Illustrations

ACKNOWLEDGMENTS

Grateful acknowledgment is expressed to Ashton-Tate for their support
and a beta-test copy of dBASE; to Climax Manufacturing; and Bob Har-
kema at Climax for his advice and development of the TeleVideo interface
software in Chapter 11.

PREFACE

During the last few years there has been a rapid growth of a new type
of consultant. This consultant works with microcomputer users and often
has a background in mainframe and minicomputers, as well as some
knowledge of systems analysis. Using new microcomputer tools like
dBASE I, this consultant is able to design custom software packages at
very nearly the cost of many existing commercial packages for a wide
variety of applications. Using dBASE II® is designed to help such a con-
sultant to begin to use one of the most popular of these program tools —
dBASE I1.

Using dBASE II® gives you an introduction to dBASE II as well as
insights to the complete systems design process. Examples and listings
give you the nucleus of programs that can be used in a wide variety of
applications. Example systems used include programs for inventory and
legal job costing. The book is an encyclopedia of my experiences with
dBASE II over two years. The book stresses structured design and
emphasizes approaching programming in a structured manner using top-
down analysis.

C.T.

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13

Chapter 14

Chapter 15
Chapter 16
Chapter 17
Chapter 18
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H

Preface

Introduction to dBASE 11
Installing and Running dBASE 11
Files, Records, and Databases
Introduction to Programming
The System Design

Designing the Menus

Adding to a Database

Editing a Database
Transaction-Based Processing
Creating Reports With dBASE 1I
Screen Generators

File Management

Using dBASE II With Foreign Files
and Application Programs

Using dBASE II as a Network-Type
Database Management System

Query Methods With dBASE II

Debugging Programs With dBASE II

dBASE II Utilities

From Development to Production
Glossary

Bibliography

Product Directory

Program Development Procedures
Structures of Data Files and Indexes
Error Messages

Limitations and Constraints
Commands and Functions

Index

vii

17
23
37
53
61
71
83
99
109
123
131

141

161
161
167
175
185
189
193
195
197
201
205
21
213
217

ONE

Introduction to dBASE |l

Fred’s Friendly Automotive repaired cars. Everyone knew Fred was
the best Volvo repairman in town, and most of his repair work involved
Volvos and a few other foreign cars. He kept a large inventory of new and
used parts. He knew that with labor costs at $30 per hour, he needed to be
able to locate parts quickly and order parts as necessary to keep the inven-
tory current. Fred knew he needed a computer with some type of inven-
tory system, so he visited his local computer store.

“We do not have any programs specifically for automotive repair
stores,” the salesperson told him. “We have Superinventory, but it is really

Introduction to dBASE |l 1

a software package for a manufacturer with an inventory. For your appli-
cation, you would need to get a BASIC language interpreter and write
your own program. In fact, you would probably need to write several pro-
grams. As an alternative, you could purchase a program that would meet
some of your needs.”

Fred was not a computer expert; in fact, he had never used a computer.
The idea of writing his own programs to process and report his automotive
parts inventory sounded like an impossible job. In addition, Fred had very
little time in his own schedule to learn to do programming. He left the
computer store empty-handed.

A few weeks later Bill Braxton, a local computer programmer, drove
his Volvo in to get a new alternator. Fred knew he had the alternator in
stock, but he could not find it. “They might have put it on that Volvo they
repaired a few days ago,” said Fred as he began looking through the in-
voices to find the one that might indicate where the missing alternator had
been installed. Bill told Fred he needed a microcomputer and Fred
laughed.

“You know it, I know it, but who is going to program it?” he retorted.

“Look,” Bill said, “I'll write a program to process your inventory and
rent you my portable computer for a day for $100. I'll show you how to load
the inventory into the computer, and later I'll pick it up and print it on my
printer at home. If you like it, I can show you how to expand the program
to meet your specific needs.”

“You've got a deal,” said Fred. “When do we start?”

Two days later Bill dropped off the portable computer and gave the
secretary a lesson on how to enter the inventory information. Bill printed
the listing on his home computer. A few days later Fred bought a comput-
er and Bill showed him how to get information on the inventory status and
how to update the quantities on hand as parts were added to or taken from
the inventory. Soon Bill added a mailing list program, and shortly there-
after Fred was mailing advertising to all of his customers. Fred’s total
cost for his custom software was just under $1000, about the same cost as
the inventory software packages he had seen that did not meet his needs.
Bill wrote all of the programs in a new language developed specifically for
microcomputers —dBASE 1I.

dBASE II is marketed as a relational database management system. A
relational database system is one that stores information in two-
dimensional tables in which data can be accessed by the relationship of
information in the tables. More accurately, dBASE II is a file manage-

Using dBASE |l

ment system with an advanced programming language. The language is
very easy to learn and is “structured,” making it possible for pro-
grammers to develop programs much faster than by using other high-
level languages like BASIC or Fortran. Originally developed for the
Viking Mars Lander Project, this programming language is now available
for almost any CP/M system.

The Database Manager

A database management system, or DBMS, is essentially a group or
collection of programs that connects the user to one or more collections of
information. The collection of information, or pool, is called a database (see
Figure 1-1). Program applications for a DBMS include general ledgers,
inventory control, accounts receivable, inquiry and mailing list systems,
cataloging, order entry systems, bibliographies —essentially any applica-
tion in which data files are built, updated, analyzed, and reported.

With most database managers, the application programs are written in
BASIC, PASCAL, Fortran or other high-level languages, and special calls
are used to the database manager. dBASE II, however, uses an internal
language so that no other language is needed.

Advantages of Database Management

Database managers prevent the duplication of data. As a system grows,
information in one file soon appears in other files. Names, addresses, and
other similar information begin to appear in several files even though
each file contains identical information. Someone must enter this dupli-
cate data into each file, creating a typing backlog and increasing the
chance of typing errors. Extra disk storage is used, and changes are not
always made to each file. Database managers, by storing everything in a
single database, eliminate this problem.

Database managers also reduce program development time. Much of
the routine programming work of file management, indexing, sorting, and

Introduction to dBASE || 3

User

|4

Application
Program

[}

Y

Database
Manager

|

1

Figure 1-1. The Database manager

report generation is done automatically with simple calls in a database
manager. Programs can easily evolve to meet the needs of the user.

Database managers improve data reliability. The integration of infor-
mation and the relationship of information within a database is done
automatically by the database manager. This relieves the programmer of
the need to use pointers and pointer chains to locate needed information.
Data reliability is improved. For instance, if sex is always “M” or “F,” the
database manager can prevent any other type of entry. If the ZIP code is
always a number, any other entry could be rejected.

4 Using dBASE i

Types of Database Management Systems

If you are interested in purchasing a database management system for
your microcomputer, you will find a very small number of true database
management systems available, As shown in Figure 1-2, most of the tools
available to the programmer in this area are, more accurately, indexing
systems or file management systems.

The simplest (and least expensive) level of systems contains the index-

Indexing Systems
(Access Manager,

KSAM, MAGSAM)

File Management

Systems
(FMS-80, ACCESS/80)

v

Database Management
Systems

—

Relational Systems Hierarchical and Net-
work Systems

(LOGIQUEST) (MDBS)

Figure 1-2. Types of information management systems

Introduction to dBASE |l 5

6

ing systems. These products are designed to work with existing high-level
languages (like BASIC) to simplify the indexing process. These products
make it possible for a programmer to add indexing capabilities to a pro-
gram that formerly had only sequential or random-access capabilities (see
Chapter 3 for more on this). However, programming must still be done in
the higher-level language. Examples of these products include MAGSAM
and ACCESS MANAGER. These are all inexpensive produets, but they do
require programming expertise to use.

At the next level are the multi-file managers. These are generally more
expensive than indexing systems and often include some type of internal
indexing system. Multi-file managers also include extra features that vary
with the product. Examples of these extra features include report genera-
tors and routines to add or update data in the files. Many of these products
can be used by someone with very little computer experience. Examples of
these products include FMS-80 and ACCESS/80.

At the highest level are the true database management systems. In a
“perfect” database management system the storage and updating of the
data is invisible to the user. All the data is stored in a single “sink” or
database. The user is only concerned about information flow. As the sys-
tem design is altered, very little change is necessary for existing pro-
grams. Although this ideal is never reached, it is approximated to various
degrees in the better systems. All the better database management sys-
tems fall into three categories: hierarchical, network, or relational. Since
the hierarchical category is a special case of network systems, there are
really only two types. Although a more complete discussion of the network
and relational database system concepts are beyond the scope of this book,
a brief overview is important in understanding dBASE II.

In a hierarchical or network system, information is stored in a struc-
ture that looks very much like an inverted tree (see Figure 1-8). This tree
could represent an inventory system for Fred’s Friendly Automotive. The
car is composed of various assemblies, and each assembly is composed of
various subassemblies. The subassemblies in turn are composed of parts.
Each part is a “child” of the “parent” subassembly or assembly that “owns”
it. In a hierarchical system no child can have more than one parent. A
network system is similar, except that a child can have more than one
parent (see Figure 1-4).

A relational system is quite different in organizational structure.
Information is stored in two-dimensional tables that are more conveniently
called files. Information in the tables is accessed by the user based on any

Using dBASE ||

Model

Part Assembly Part
Subassembly
Part Part
Part Part
Subassembly
Part Part Part

Figure 1-3. Hierarchical data structure

desired relationship. The differences between network and relational data-
bases are shown in Table 1-1.

The inventory system Bill designed for Fred's Automotive consisted of
three files for information storage. One file contained all the inventory
with the part numbers, part descriptions, quantity on hand, cost, and
price for each item. The second file contained the names, addresses, and
an identifying number for each customer. A third file was the invoice file,
which showed the invoice number and the labor and itemized part charges

Introduction to dBASE I 7

Table 1-1. Differences Between Network and Relational Systems

Hierarchical and
Network Database

Relationships between items in the
database are stored physically in
the database.

Complex relationships of items that
are a physical part of the database
can be created.

Database files are not easily alter-
able to new physical relationships.

Good machine performance if pro-
cessor size and memory size are
adequate.

Large amounts of memory and
secondary data storage space are
needed.

Extra space is necessary to store all
the relational information.

Relational
Database

Relationships between items are not
stored in the database and are
created logically rather than physi-
cally.

Easier to understand and use.

Database files can be easily altered
to fit new situations.

Machine performance varies de-
pending on how the application is
implemented.

Utilizes relatively little memory
and secondary disk storage.

Relational databases waste space by
storing the maximum space for
each field whether it is needed

or not.

Model

Model

[Assembly |

Subassembly_J L Part

1 L Part

1 Assembly l LSubassembl)j

[subsssembly | [Part] [Part |

Subassemtm r Part j [Part

JLPart—]

Part j

[Part

JLPart—]L

Figure 1-4. Example of network data structure

8

Using dBASE |

for each customer (these files are shown in Figure 1-5). Since dBASE II is
a relational system, it was ideal for Fred’s application. If Fred had wanted
to keep the information about the relationship of parts to subassemblies
and assemblies, he could still have used dBASE II. In Chapter 15 we show
you how this is done.

A true DBMS has the following features:

* Program and data independence. The structure of the data files can
be changed without changing the program. Programs can be
changed without changing the data file structures.

* Information (and data) is stored (as seen by the user) as a single col-
lection or file.

* The data can be used by a large collection of application programs
with security control on the information to prevent unauthorized
access by users who should not have access. Salaries of employees, for
example, should not be accessible by someone interested only in
employees’ addresses.

* Tools for sorting, indexing, and reporting data in the database are
provided to minimize programming development.

The History of dBASE |1

The story of dBASE II is as fascinating as its capabilities. The story
began in the space-age setting of the Jet Propulsion Laboratory (JPL) near
Pasadena, California.

In 1974, scientists and engineers at JPL began using an advanced type
of database management system to analyze information from many of
JPL’s unmanned space probes. The system, known as JPLDIS (JPL Data-
Management and Information-Retrieval System) was written by Jeb Long.

Wayne Ratliff was a systems designer at the laboratory and wanted a
similar system to run on his home microcomputer system. Ratliff was fas-
cinated not only by the control of these very “intelligent” unmanned space
probes, but also by the whole field of artificial intelligence. He began writ-
ing some artificial intelligence software using JPLDIS as a model. In 1980,

Introduction to dBASE || (=]

Inventory Master File

PARTNO DESCRIPTION QOH COST

=

Invoice File

DATE CUSTOMERNO INVOICE QTY PARTNO

Customer File

CUSTOMER ADDRESS CITY STATE ZIP CUSTOMERNO

_/

Figure 1-5. Relation between files in Fred’s Automotive system

10

Using dBASE |l

his program had become more powerful than JPLDIS. Jeb Long was
impressed.

In 1979, Ratliff began advertising his program as VULCAN in the
back pages of BYTE magazine. The early version lacked many of the fea-
tures of its competition in 1980. There was no indexing feature, and
records could only be located by scanning the entire file. Fancy menus,
screen displays, and reports that are easy to create with dBASE II were
not available in the early VULCAN version. In August of 1980, Ratliff
released an advanced version of VULCAN with indexing and screen-
generating features. The product now exceeded the capabilities of many of
its competitors, but sales were slow. No more than fifty VULCANSs were
ever sold.

During the summer of 1980, George Tate began to hear about VUL
CAN. Tate had been a major software distributor for years, and he tried
the VULCAN system. He too was impressed. When he learned that only
fifty copies had been sold, he told Ratliff he could sell fifty a month. A
contract was soon signed guaranteeing Ratliff generous royalties. The
VULCAN name was dropped and the product was called dBASE II.
There never was a dBASE I —this was simply a marketing ploy to imply a
new, improved version. Several features were added to the documentation.

Then George Tate flooded the market with strange ads comparing
dBASE 1II to a bilge pump. The database competitors did not like the
advertisement and neither did the bilge pump manufacturer, but the
advertisement worked. A separate company (Ashton-Tate) was formed to
market the product. Over 2000 copies of dBASE II are sold a month now,
and Ratliff is semi-retired from JPL.

dBASE Il Concepts

dBASE II is marketed and sold as a relational database management
system. Since several files are generally used in a given application and
the relationship between information in different files is not stored in the
system, dBASE II is not a true database management system in the strict-
est sense of the word. dBASE II is more like a file management system

Introduction to dBASE || 11

