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Preface

The rapid identification and characterization of genes of neurological relevance
holds great potential for offering insight into the diagnosis, management, and under-
standing of the pathophysiologic mechanisms of neurological diseases. This volume
in the Methods in Molecular Biology™ series was conceived to highlight many of the
contemporary methodological approaches utilized for the characterization of neuro-
logically relevant gene mutations and their protein products. Although an emphasis
has been placed upon descriptions of methodologies with a defined clinical utility, it
is hoped that Neurogenetics: Methods and Protocols will appeal not only to clinical
laboratory diagnosticians, but also to clinicians, and to biomedical researchers with an
interest in advances in disease diagnosis and the functional consequences of neuro-
logically relevant gene mutations.

To meet this challenge, more than 60 authors graciously accepted my invitation
to contribute to the 32 chapters of this book. Through their collective commitment
and diligence, what has emerged is a comprehensive and timely treatise that covers
many methodological aspects of mutation detection and screening, including discus-
sions on quantitative PCR, trinucleotide repeat detection, sequence-based mutation
detection, molecular detection of imprinted genes, fluorescence in situ hybridization
(FISH), in vitro protein expression systems, and studies of protein expression and
function. I would like to take this opportunity to formally thank my colleagues for
their effort and dedication to this work.

This book would not have been possible without the guidance and wisdom of the
Series Editor, Professor John M. Walker, whose intimate knowledge of the nuances of
the editorial process made my job somewhat less intimidating. I would also like to
thank Thomas Lanigan, President of Humana Press, who enthusiastically embraced
the book concept and my original prospectus from the very beginning, and Craig Adams,
also at Humana Press, for transforming the individual chapters into their final form.

Nicholas T. Potter
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Determination of Gene Dosage
Utilization of Endogenous and Exogenous Internal Standards

Thomas W. Prior

1. Introduction

There are currently several screening methods for the detection of point mutations,
such as single-stranded conformation polymorphism, heteroduplex analysis, denatur-
ing gradient gel electrophoresis, and chemical cleavage. These are powerful tools for
the identification of small sequence changes, but fail to detect heterozygous deletions
or duplications of exons, genes or chromosomes. There are many genetic disorders
where the primary defect is either owing to allelic deletions (Duchenne muscular dys-
trophy, spinal muscular atrophy, alpha thalassemia, growth hormone deficiency, famil-
ial hypercholesterolemia, and so on) or duplications (Charcot-Marie-Tooth, Klinefelter
syndrome, Down syndrome, and so on). Furthermore, for the determination of the car-
rier state, for disorders such as Duchenne muscular dystrophy and spinal muscular
atrophy, the accurate determination of heterozygous deletions is essential. This chapter
will describe two methods for the determination of gene dosage, using Duchenne mus-
cular dystrophy and spinal muscular atrophy as examples.

1.1. Duchenne Muscular Dystrophy Dosage Testing
Utilization of an Endogenous Internal Standard

Duchenne muscular dystrophy is an X-linked neuromuscular disease characterized
by progressive muscular weakness and degeneration of skeletal muscle. Approximately
60% of the DMD and BMD patients have deletions of the dystrophin gene (1-3). Origi-
nally, in order to identify female carriers in Duchenne muscular dystrophy, one per-
formed gene dosage using quantitative Southern blot analysis, whereby one determines
whether the female at risk exhibits no reduction (noncarrier status) or 50% reduction
(carrier status) in hybridization intensity in those bands that are deleted in the affected
male (4,5). The dosage determinations permit direct carrier analysis and eliminates the
inherent problems of the restriction fragment length polymorphism (RFLP) technique
(recombinations, noninformative meioses, unavailability of family members, and spo-
radic mutations). To further increase the accuracy of the dosage analysis, the autorad-
iographic bands can be scanned with a densitometer (6).

Although dosage analysis has significantly improved carrier studies, particularly in
the isolated cases of the disease, there are technical limitations. Dosage analysis of

From: Methods in Molecular Biology, vol. 217: Neurogenetics: Methods and Protocols
Edited by: N. T. Potter © Humana Press Inc., Totowa, NJ

3



4 Prior

Southern blots requires optimal conditions; very good quality blots are necessary, with
even transfer and hybridization, and low background. In order to obtain this high qual-
ity we have found that approx 20% of the Southerns have to be repeated, resulting in
increased time and labor. Rather than directly comparing single bands, band ratios are
calculated as a means of decreasing the error caused by differences in the amount of
DNA in each lane. The normal control ratio is established by comparing a band lacking
against a band present in the patient (which serves as an internal control) in an unaf-
fected female. When this ratio in a female (at risk) is approx half the control ratio, this
indicates that she has a single copy of the band deleted in the patient and therefore is a
carrier. Depending on the extent of the deletion, the restriction fragments involved in
the deletion, and the specific cDNA probe that identifies the deletion, one may be
extremely limited as to what bands are used in the control ratio. We have found that
bands greater than 10 kb and less than 0.5 kb typically result in weaker intensities and
are not always adequate for scanning purposes. Mao et al. stated that for deletions in
the center of the gene (cDNA 8 hybridizations), they prefer to make a statement of the
carrier status only if at least one of the strong hybridizing fragments (7, 3.8, 3.7, or
3.1 kb) is deleted in the patient (7). Furthermore the difference between one or two
copies is relatively easy to detect but differences between two and three copies, or
sometimes three or four copies, in the case of a duplication or comigrating bands can
be very difficult. Lastly, due to the extent of a deletion in an affected individual, no
hybridizing bands may be detected with a cDNA probe and comparison of hybridiza-
tion bands within a lane is not possible in these cases.

The determination of carrier status has significantly improved by using the poly-
merase chain reaction (PCR). Since the extension product of each primer serves as a
template for the other primer, each cycle essentially doubles the amount of the DNA
product produced in the previous PCR cycle. This results in the exponential accumula-
tion of the specific fragment, up to several millionfold in a few hours. However, to
obtain quantitative results, the PCR products must be estimated during the exponential
phase of the amplification process, because it is during the exponential phase where the
amount of amplified products is proportional to the abundance of starting DNA (8).
This occurs when the primers, nucleotides, and Taq polymerase are in a large excess
over that of the template concentration. In our experience, after the completion of an
adequate number of cycles (25-30) to visualize the PCR products on an ethidium-
bromide-stained gel, the PCR reaction is no longer in the exponential quantitative range.
Therefore the gene dosage-PCR is accomplished by amplifying the genomic DNA at
lower cycle numbers (before visualization by ethidium bromide), running the products
out on an agarose gel, Southern transferring the products, and hybridizing the amplicons
with a radiolabeled probe. We have found that linearity is well-maintained within
10—15 cycles and hybridization band intensity is still strong (9).

A case study using quantitative PCR is shown in Fig. 1. A DMD patient was found
to have a molecular deletion for exons 8—19. This was an isolated case of the disease
and the mother and two daughters were tested for carrier status. Therefore exons 19
and 50 in the mother, daughters, proband, and a normal female control were amplified
for 12 cycles, hybridized with the corresponding cDNA probes, and the autoradiogram
is shown in Fig. 1. Exon 50 serves as an endogenous internal control, because this is an
exon that is not deleted in the patient. The endogenous internal standard is coamplified
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I-1

Exon 19

Exon 50

Fig. 1. Duchenne muscular dystrophy carrier determination by gene dosage using an endog-
enous internal standard. The affected son is deleted for exon 19. Exon 50 is the endogenous
internal standard, since the affected son is not deleted for this exon. The mother (I-1) and
daughter (II-1) show a 50% reduction in the exon 19/50 ratio compared to the C (noncarrier
female control). Daughter II-2 is a noncarrier since her exon 19/50 is equivalent to C.

with the target of interest (deleted exon) and serves as a control for several factors:
differences in initial template concentrations between different samples, sample-
to-sample variations in the PCR, the extent of any DNA degradation, and differences
in the amounts of amplicon loaded onto the gel. Thus, rather than directly comparing
single bands, band ratios are calculated. The 19/50 exon ratios in the mother and daugh-
ter (II-1) were approx half the normal control ratio, and the ratio in daughter (II-2) was
the same as the control. The ratios were confirmed by densitometer. Therefore, the
mother, daughter (1I-1) are carriers and daughter (II-2) is a noncarrier of the exon 19.
Dosage determinations permit direct carrier analysis and eliminates the inherent prob-
lems of the RFLP technique (recombinations, noninformative meioses, unavailability
of family members, and spontaneous mutations). This is important since unlike the
affected males, the heterozygous females are generally asymptomatic and creatine
kinase (CK) is only elevated in approx 50—60% of known carriers (10).

1.2. Spinal Muscular Atrophy Dosage Testing:
Utilization of an Exogenous Internal Standard

Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by
degeneration of the motor neurons in the spinal cord, resulting in symmetrical limb and
trunk paralysis. With a prevalence of about 1 in 10,000 live births, and a carrier fre-
quency of approx 1 in 50, SMA is the second most common fatal autosomal recessive
disorder after cystic fibrosis. The survival motor neuron gene (SMN) has been shown
to be deleted in approx 95% of patients with SMA (11). Although direct diagnostics
have significantly improved by the identification of homozygous SMN gene deletions,
carrier detection for the determination of a single copy of the gene is a technical chal-
lenge. This is mainly due to the fact that the SMA region is characterized by the pres-
ence of many repeated elements. The SMN gene itself is present in two almost identical
copies, a telomeric (SMN1) and a centromeric copy (SMN2). The two genes differ in
exons by only two base pairs, one in exon 7 and one in exon 8, and it is SMN1 that is
deleted in cases of SMA. Although the centromic and telomeric copies can be readily
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separated by a restriction enzyme digestion, using the centromeric copy as the internal
endogenous standard will not be accurate since it is not constant. In the normal popula-
tion we have observed the following: approx 10% are homozygously deleted, 40%
have one copy, and 50% have two copies of the SMN2 gene, respectively.

Dosage determination of the SMN copy number is performed by a competitive
PCR method using an exogenous in vitro synthesized DNA internal standard (12). In
the competitive PCR method, a known number of copies of a synthetic mutated inter-
nal standard is introduced with the patient sample into the PCR mixture. The major
advantage of this technique is that the internal standard is amplified with the same
primers that amplify the target sequence. Thus, the efficiency of the amplification of
the patient DNA and the internal standard DNA should be very similar and allow one
to accurately determine the gene copy number. The internal standard is synthesized
using the same forward specific primer. However, the reverse primer has now been
moved 50 bases upstream from the original reverse primer and is tagged at it 5' end
with the original reverse primer sequence (13). The resulting PCR product will thus
be identical to the original specific PCR product, but will lack 50 base pairs and thus
be distinguished from the endogenous sequence by size (Fig. 2A). The internal stan-
dard is quantitated by UV spectrophotometry, and diluted to an appropriate concen-
tration. The quantitative PCR dosage assay then consists of spiking a known amount
of the internal standard to the patient sample and amplifying the sample with the
original forward and reverse primers that are against common sequences (Fig. 2B).
One of the primers is 3?P-end-labeled. With this approach, two products will be gen-
erated: one derived from the patient and a second 50 bp smaller product from the
internal standard. The PCR products are then diluted in loading buffer, electrophore-
sed on a 6% denaturing gel, and autoradiography is performed.

Our dosage assay also uses an exon from the cystic fibrosis transmembrane regula-
tor (CFTR) as an internal standard (14). Thus, multiple ratios can be utilized for the
accurate determination of carrier status and, most importantly, changes in the SMN1
dosage as a result of fluctuations in the SMN2 copy number are avoided. Furthermore,
the use of two internal standards (SMN-IS and CFTR-IS) allows one to monitor the
efficiency of the PCR reaction and ensures that equal amounts of target DNA is added
to each tube. Similar quantitative PCR approaches have been used successfully to iden-
tify deletions in the insulin receptor gene (15), to detect duplications in Down syn-
drome patients (15), and to quantitate oncogene amplification (16).

Figure 3 shows several carriers and noncarriers identified using the competitive
PCR with the exogenous internal standards. As shown, although the SMN2 copies var-
ies from 0-2 copies, the dosage ratios are maintained. Furthermore, multiple ratios can
be used in determining carrier status and thereby improve the overall quality assurance
of the assay. Our present protocol utilizes the SMN1/CFTR ratio.

2. Materials
2.1. Genomic Isolation

I. Genomic DNA was extracted from leukocytes harvested from whole blood anticoagulated
with EDTA using a salting out procedure (17). DNA concentrations were determined using

a spectrophotometer, as well as by monitoring the intensity of ethidium bromide staining
on a test gel.



