- FUNDAMENTALS OF
~ STRUCTURED
PROGRAMMING
“USING FORTRAN WITH
SF/k AND WATFIV-S

FUNDAMENTALS OF
STRUCTURED
PROGRAMMING
"USING FORTRAN WITH
SF/k AND WATFIV-S

HOLT
P. HUME
rtment of Computer Science

R. C.
J. N.
De

G
A Prentice-Ha Il Company

Library of Congress Cataloging in Publication Data

Holt, R C |
Fundamentals of structured programming using
FORTRAN with SF/k and WATFIV-S,

Bibliography: p. 337

includes index.

1. FORTRAN (Computer program language)
2. Siructured programming. I. Hume, }. N. P.,
joint author. 1. Title.

QA76.73.F25H85 001.6'424 76-20593
ISBN 0-87909-303-X
ISBN 0-87909-302-1 pbk.

©1977 by

RESTON PUBLISHING COMPANY, INC.
Reston, Virginia 22090

A Prentice-Hall Company

All rights reserved. No part of this book
may be reproduced in any way, or by any
means, without permission in writing
from the publisher. -

10987654327

Printed in the United States of America

PREFACE

This book is intended to form the basis of an introductory course in computing. No
particular mathematical background beyond basic arithmetic is assumed; examples are taken
largely from everyday life. In this way, the focus is on programming and problem solving,
rather than on mathematics. It is our strong conviction that the foundation of computer pro-
gramming must be carefully laid. Bad habits once begun are hard to change. Even for those
who do not continue to study computer science, an experience in the systematic analysis of
problems from the statement of “what is to be done” to the final algorithm for ‘‘doing it"’
can be very helpful in encouraging logical thinking.

The programming language presented here is Fortran, extended in such a way that it
permits structured programming. This language is introduced in a series of subsets that we
call SF/1, SF/2, SF/3, and so on. The SF stands for Structured Fortran. We hope that a stu-
dent will learn the concepts of structured programming by following this step-by-step
presentation of extended Fortran subsets.

Just as a program provides a list of instructions to the computer to achieve some well-
defined goal, the methodology of structured programming provides a list of instructions to
persons who write programs to achieve well-defined goals. The goals of structured pro-
gramming are to get a programming job done correctly and in such a form that later modifi-
cations can be done easily. This means that programs must be understood by people other
than their authors.

The Standard Fortran language is not a language that encourages structured program-
ming but fortunately it has recently been extended to include several new features that are
essential. One compiler that supports these extensions is the Watfiv-S compiler. All programs
written in this book are compatible with Watfiv-S.

As each extended Fortran subset is learned, new poisibilities open up. Even from the
first subset SF/1, it is possible to write programs that do calculations and print. By the time
the subset SF/4 is reached, a student has learned how to handle alphabetic information, as
well as to do numerical calculations and structure the control flow of the program,

Extended Fortran was chosen because it contains control structures that make struc-
tured programming easy. It is, however, possible to produce the same result using Standard
Fortran and this is described in detail. The reason that Standard Fortran is not used in the

v

Vi PREFACE

first place is that it obscures the elegance of the control structures and does not permit
format-free input-output or direct character handling.

| Structured programming is especiaily important when working on larger programs; a

detailed discussion 'of the techniques of modular programming and top-down dessgn accom-

panies the introduction of Fortran subprograms in SF/7.

Many examples in the book are from data processing. General concepts of data struc-
tures, searching, and sorting fit well into this important area that touches all our lives.

The book ends with examples of scientific calculations and the translation of a high-
level programming language into machine fanguage.

At all times we have tried to present things in easy to understand stages, offering a
large number of program examples and exercises to be done by the student. Each chapter
has a summary of the important concepts introduced in it.

The subsets of extended Fortran that we call SF/k are based on subsets for the PL/1
language cailed SP/k. THe SP/k subsets were designed by R. C. Holt and D. B. Wortman of
the University of Toronto.

This book was prepared using a text editing system on a computer. Each program was
tested using the Watfiv-S compiler. The job of transcribing the authors’ pencil scrawls into
the-computer was done with great care and patience by Inge Weber. We are indebted to the
many people who offered constructive criticism. In particular we would thank }im Horning,
Bob Cherniak, Brian Clark, Dave Barnard, Les Mezei, Rudy Schild, and Laurie Johnston for
their detailed critiques. We have sprinkled through the book names of other people who have
helped us. :

The time taken to write a book comes at the expense of other activities. Since most of
the time was in the evenings or on weekends we must end with grateful thanks to our wives
Marie and Patricia. 1

R. C. Holt
}. N. P. Hume

CONTENTS

1 INTRODUCTION TO PROGRAMMING

WHAT 1S PROGRAMMING?, 1 |
WHAT IS STRUCTURED PROGRAMMING?, 2
WHAT IS FORTRAN?, 3

WHAT IS SF/k?,4

WHY LEARN JUST A SUBSET?, 4
CORRECTNESS OF PROGRAMS, 5
SUMMARY, 6

2 THE COMPUTER

PARTS THAT MAKE THE WHOLE, 9
CODED INFORMATION, 10
MEMORY, 11

ARITHMETIC UNIT, 13

CONTROL UNIT, 15

INPUT AND OUTPUT, 16
PROGRAM TRANSLATION, 18
SUMMARY, 19

3 SF/1: PROGRAMS THAT CALCULATE AND PRINT

CHARACTERS, 21
NUMBERS, 23

CHARACTER STRINGS, 24

EXPRESSIONS, 25

EXAMPLES OF ARITHMETIC EXPRESSIONS, 26
PRINTING, 27 |

THE PROGRAM, 28

CONTROL CARDS, 29

AN EXAMPLE PROGRAM, 29

vii

21

vili

SUMMARY, 30
EXERCISES, 31

4 SF/2: VARIABLES AND ASSIGNMENTS

VARIABLES, 35
DECLARATIONS, 36
ASSIGNMENT STATEMENTS, 37
TRACING EXECUTION, 39
INPUT OF DATA, 41

CONVERSION BETWEEN INTEGER AND REAL, 42

COMMENTS, 43
AN EXAMPLE OB, 43
LABELING OF OUTPUT, 45

'PROGRAM TESTING, 47

COMMON ERRORS IN PROGRAMS, 49
SUMMARY, 50
EXERCISES, 51

5 SF/3: CONTROL FLOW

COUNTED LOOPS, 55
CONDITIONS, 57 ,

LOGICAL VARIABLES, 58
CONDITIONAL LOOPS, 58

READING CARDS, 59

EXAMPLES OF LOOPS, 61
BRANCHES IN CONTROL FLOW, 64
THREE-WAY BRANCHES, 65
EXAMPLE IF STATEMENTS, 67
PARAGRAPHING THE PROGRAM, 69
SUMMARY, 69

EXERCISES, 71

6 STRUCTURING CONTROL FLOW

BASIC STRUCTURE OF DO LOOPS, 75
FLOW CHARTS, 77

PROBLEMS WITH LOOPS, 78

NESTED LOOPS, 79

AN EXAMPLE PROGRAM, 80

LOOPS WITH MULTIPLE CONDITIONS, 82

|F STATEMENTS WITH MULTIPLE CONDITIONS, 83

SUMMARY, 84
EXERCISES, 85

CONTENTS

35

55

75

CONTENTS

7 SF/4: ALPHABETIC INFORMATION HANDLING

CHARACTER STRINGS, 87
CHARACTER STRING VARIABLES, 88

READING AND PRINTING STRINGS, 89

COMPARISON OF STRINGS FOR RECOGNITION, 90

SEQUENCING STRINGS, 91
SUMMARY, 92
EXERCISES, 93

8 SF/5: ARRAYS

DECLARATION OF ARRAYS, 95
HANDLING LISTS, 96

AN EXAMPLE PROGRAM, 97
TWO-DIMENSIONAL ARRAYS, 99
ANOTHER EXAMPLE PROGRAM, 100
ARRAYS AS DATA STRUCTURES, 102
OTHER DATA STRUCTURES, 102
SUMMARY, 103

EXERCISES, 104

9 STRUCTURING YOUR ATTACK ON THE PROBLEM

10 SF/6:

STEP-BY-STEP REFINEMENT, 109
TREE STRUCTURE TO PROBLEM SOLUTION, 110
CHOOSING DATA STRUCTURES, 111

GROWING THE SOLUTION TREE, 111
DEVELOPING AN ALGORITHM, 112

ASSESSING EFFICIENCY, 114

A BETTER ALGORITHM, 114

BETTER ALGORITHMS, 116

SUMMARY, 117

EXERCISES, 118

CONTROLLING INPUT AND OUTPUT

FORMAT DESCRIPTION, 121

PRINTING REAL NUMBERS, 122
PRINTING CHARACTER STRINGS, 124
PRINTING INTEGERS, 124 |
CARRIAGE CONTROL CHARACTERS, 125
READING NUMBERS, 125

READING CHARACTER STRINGS, 126
SKIPPING POSITIONS, 126

Ix

87

95

109

121

CONTENTS

READING AND PRINTING CHARACTER ARRAYS, 126

SUMMARY, 127
EXERCISES, 129

11 THE COMPUTER CAN READ ENGLISH 133

12 _SE/T:

. DEFINITION OF A SUBPROGRAM, 145

WORD RECOGNITION, 134
WORDS WITH PUNCTUATION, 136
NAME RECOGNITION, 137

WORD STATISTICS, 140
READING FORTRAN, 142
SUMMARY, 143

EXERCISES, 143

SUBPROGRAMS - 145

USING SUBPROGRAMS, 146

ARGUMENTS AND PARAMETERS, 147

CONSTANTS AS ARGUMENTS, 148

FUNCTIONS, 150

EXAMPLES OF SUBROUTINES AND FUNCTIONS, 152
SUBPROGRAMS AND NESTING, 154

VARIABLES IN COMMON, 156

SUMMARY, 158

EXERCISES, 160

13 PROGRAMMING IN STANDARD FORTRAN 163

WHAT IS STANDARD FORTRAN?, 163

LOGICAL IF AND GO TO STATEMENTS, 164
TRANSLATING IF. . .THEN. . .ELSE AND WHILE. . .DO, 165
READING AND PRINTING, 167

WHERE HAVE ALL THE CHARACTERS GONE?, 168
VARIOUS RESTRICTIONS, 170

AN EXAMPLE IN SF/k AND STANDARD FORTRAN, 170
OTHER STANDARD FORTRAN CONSTRUCTS, 171.
SUMMARY, 172

EXERCISES, 173

14 MODULAR PROGRAMMING 175

A PROBLEM N BUSINESS DATA PROCESSING, 175
DIVIDING THE PROGRAM INTO PARTS, 177
COMMUNICATION AMONG MODULES, 177

CONTENTS

WRITING THE MODULES, 178
THE COMPLETE PROGRAM, 180

USING MODULES, 182

MODIFYING A PROGRAM, 182
SUMMARY, 183
EXERCISES, 184

15 SEARCHING AND SORTING

LINEAR SEARCH, 185 |
TIME TAKEN FOR SEARCH, 187

BINARY SEARCH, 187

A SUBROUTINE FOR BINARY SEARCH, 188
SEARCHING BY ADDRESS CALCULATION, 190
SORTING, 191

SORTING BY MERGING, 191

EFFICIENCY OF SORTING METHODS, 192
SUMMARY, 193

EXERCISES 194

16 MAKING SURE THE PROGRAM WORKS

17 SF/8:

SOLVING THE RIGHT PROBLEM, 195
DEFENSIVE PROGRAMMING, 196
ATTITUDE AND WORK HABITS, 196
PROVING PROGRAM CORRECTNESS, 196
PROGRAMMING STYLE, 197 |

USE OF COMMENTS AND IDENTIFIERS, 197
TESTING, 199

DEBUGGING, 201

SUMMARY, 203

EXERCISES, 204

FILES AND RECORDS

RECORDS IN FORTRAN, 207
ARRAYS OF RECORDS, 208

FILES IN SECONDARY MEMORY, 210
FILE MAINTENANCE, 212

SUMMARY, 213
EXERCISES, 214

18 DATA STRUCTURES

LINKED LISTS, 217
INSERTING INTO A LINKED LIST, 219

x{

185

195

207

217

Xif

CONTENTS

MEMORY MANAGEMENT WITH LISTS, 219
SUBROUTINE FOR INSERTING INTO A LINKED LIST, 220
DELETING FROM A LINKED LIST, 223

STACKS, 223

QUEUES, 225

TREES, 226

ADDING TO A TREE, 228

DELETING FROM A TREE, 228

PRINTING A TREE IN ORDER, 229

SUMMARY, 231

EXERCISES, 232

19 SCIENTIFIC CALCULATIONS | 235

EVALUATING FORMULAS, 236
BUILT-IN FUNCTIONS, 238

GRAPHING A FUNCTION, 238

A SUBROUTINE FOR PLOTTING GRAPHS, 240
USING THE GRAPH SUBROUTINE, 242
FITTING A CURVE TO A SET OF POINTS, 242
SOLVING POLYNOMIAL EQUATIONS, 244
SOLVING LINEAR EQUATIONS, 245

AREAS UNDER CURVES, 246

SUMMARY, 247

EXERCISES, 249

20 NUMERICAL METHODS | | 251

EVALUATION OF A POLYNOMIAL, 251
ROUND-OFF ERRORS, 253

LOSS OF SIGNIFICANT FIGURES, 254
EVALUATION OF INFINITE SERIES, 254
ROOT FINDING, 257

SUBROUTINE FOR ROOT FINDING, 258
NUMERICAL INTEGRATION, 260

LINEAR EQUATIONS USING ARRAYS, 261
LEAST SQUARES APPROXIMATION, 262
MATHEMATICAL SOFTWARE, 263
SUMMARY, 264

EXERCISES, 266

21 ASSEMBLY LANGUAGE AND MACHINE LANGUAGE 269

MACHINE INSTRUCTIONS, 269 .
INSTRUCTIONS FOR A VERY SIMPLE COMPUTER, 271

CONTENTS xiif

TRANSLATION OF AN SF/k PROGRAM, 272
MNEMONIC NAMES AND MACHINE LANGUAGE, 272
STORING MACHINE INSTRUCTIONS IN WORDS, 274
A COMPLETE MACHINE LANGUAGE PROGRAM, 275
SIMULATING A COMPUTER, 277

USES OF SIMULATORS, 280

SUMMARY, 280

EXERCISES, 281

22 PROGRAMMING LANGUAGE COMPILERS 283

A SIMPLE HIGH-LEVEL LANGUAGE, 283
SYNTAX RULES, 284 |
USING SYNTAX RULES TO PRODUCE A PROGRAM, 286
ACTIONS OF THE COMPILER, 288

SCANNING WORDS AND CHARACTERS, 291
COMPILING ASSIGNMENT STATEMENTS, 291
COMPILING PRINT STATEMENTS, 292
COMPILING WHILE. . .DO AND END WHILE, 293
COMPILING RETURN, 295

THE COMPILER, 295

RUNNING THE COMPILED PROGRAM, 302
SUMMARY, 304 |

EXERCISES, 305

APPENDIX 1: SPECIFICATIONS FOR THE SF/k LANGUAGE 307
APPENDIX 2: THE STATEMENT SYNTAX OF SF/7 325
APPENDIX 3: BUILT-IN FUNCTIONS IN SF/k 327
APPENDIX 4: THE WATFIV-S COMPILER 329
BIBLIOGRAPHY | 334

INDEX 337

CHAPTER 1

INTRODUCTION
TO PROGRAMMING

The name of this book is somewhat of a mouthful! Perhaps it
would help if we took it piece by piece and introduced you to the
name slowly. We hope that it is no secret that the book has to
do with computers and particularly with the use of computers
rather than their design or construction. 'To use computers you
must learn how to speak their language or a language that they
can understand. We do not actually speak to computers vet,
although we may some day; we write messages to them. The reason
we write these messages is to instruct the computer about some
work we would 1like it . do for us. And that brings us to

programming.

WHAT IS PROGRAMMING?

Programming is writing instructions for a computer in a
language that it can understand so that it can do something for
you. You will be learning to write programs in one particular
programming language called Fortran. -When these instructions are
put on to some medium that a computer can read such as punched
cards then they can be fed into the machine. They go into the
part of the computer called its memory and are recorded there for
as long as they are needed. The 1instructions could then be
executed if they were in the language the computer understands
directly, the language called machine language. If they are in
another language such as Fortran they must first be translated,
arnid a program in machine language compiled from the original or
source program. After compilation the proggam can be executed.

Computers can really only do a very small number of different
basic things. For example, an instruction which says, STAND ON
YOUR HEAD, will get you nowhere. The repertoire of instructions
that any computer understands usually includes the ability to

I

2 - FUNDAMENTALS OF STRUCTURED PROGRAMMING

move numbers °‘from one place to another in its memory, to add,
subtract, multiply, and divide. They can, in short, do all kinds
of arithmetic calculations and they can do these operations at
rates of up to a million a second. Computers are extremely fast
calculating machines. But they can do more; they can also handle
alphabetic information, both moving it around in their memory and
comparing different pieces of information to see if they are the
same. To include both numbers and alphabetic information we say
that computers are data processors or more generally information

processors.

When we write programs we write a sequence of instructions
that we want executed one after another. But you can see that
the computer could execute our programs very rapidly if each
instruction were executed only once. A program of a thousand
instructions might take only a thousandth of a second. One of
the instructions we can include in our programs is an instruction
which causes the use of other instructions to be repeated over
and over. In this way the computer is capable of repetitious
work; it tirelessly executes the same set of instructions again
and again. Naturally the data that it 4is operating on must’
change with each repetition or it would accomplish nothing.

Perhaps you have heard also that computers can make
decisions. In a sense they can. These so-called decisions are
fairly simple. The instructions read something like this:

IF JOHN IS OVER 16 THEN PLACE HIM ON THE HOCKEY TEAM
ELSE PLACE HIM ON THE SOCCER TEAM

Depending on the condition of John's age, the computer could
pPlace his name on one or other of two different sports teams. It
can decide which one if you tell it the decision criterion, in
our example being over sixteen or not.

Perhaps these first few hints will give you a clue to what
programming is about. |

WHAT IS STRUCTURED PROGRAMMING?

Certain phrases get to be popular at certain times; they are
fashionable. The phrase, "structured programming” is one that
has become fashionable recently. It is used to describe both a
number of techniques for writing programs as well as a more
gensral methodology. Just as programs provide a list of
instructions to the computer to achieve some well-defined goal,
the methodology of structured programming provides a list of
instructions to persons who write programs to achieve some well-
defined goals. The goals of structured programming are, first,
to get the job done. This deals with how to get the job done and
how to get it done correctly. The second goal is concerned with
-having it done so that other people can see how it is done, both

CHAP. 1 INTRODUCTION TO PROGRAMMING 3

for their education and in case these other people later have to
make changes in the original programs.

Computer programs can be very simple and straightforward but
many applications require that very large programs be written.
The very size of these programs makes them complicated and
difficult to understand. But if they are well~structured, then
the complexity can be controlled. Controlling complexity can be
accomplished in many different ways and all of these are of
interest in the cause of structured programming. The fact that
structured programming is the "new philosophy” encourages us to
keep track of everything that will help us to be better
programmers. We will be cataloguing many of the elements of
structured programming as we go along, but first we must look at
the particular programming language you will learn.

WHAT IS FORTRAN?

. e

- is a language that has been developed to be independent of the

particular computer on which it is run and oriented to the
problems that persons might want done. We say that Fortran is a
high-level language because it was designed to be relatively easy
to learn and use. As a problem-oriented language it is
particularly concerned with problems of numerical calculations
such as occur in scientific and engineering applications but it
has been extended so that it can be wuseful in alphabetic
information handling required by business and humanities

applicatioqs.

Fortran as it has been extended is a very extensive language,
so that although each part is easy to 1learn, it reguires
considerable study to master. Many different computer
installations have the facilities to accept programs written in
Fortran. This means that they have a Fortran compiler that will
translate programs written in Fortran into the language of the
particular machine that they have. Also many programs have
already been written in Fortran; in some installations a standard
language is adopted, and Portran is often that standard language.

It has been the experience over the past years that a high-
level language lasts much longer than machine languages, which
change every five vyears or so. Fortran began its existence
nearly twenty years .ago and it has had numerous extensions. As
each new version of Fortran was created an attempt was made to
keep it compatible with previous versions. This igs because once
an investment has been made in programs for a range of
applications, an installation does not want to have to reprogram
when a new Fortran compiler is acquired.

Because of the long life-span of programs in high-level
languages it becomes more and more important that they can be

FUNDAMENTALS OF STRUCTURED PROGRAMMING

-

adapted to <changes in the application rather than completely
reconstructed. A high-level language has the advantage that
well-constructed and well-documented programs in the language can
be readily modified. It is our aim to teach you how ¢to write
such programs. To start your learning of Fortran we will study
subsets of the extended Fortran language called SF/k. SF/k was
developed at the University of Toronto.

WHAT IS SF/Kk?

The name SF/k stands for Structured Fortran subset k. There
really is a series of subsets beginning at SF/1, then SF/2, and
going on up. The first subset contains a small number of the
language features of extended Fortran, but enough so that you can
actually write a complete program and try it out on a computer
right away. The next subset, SF/2, contains all of SF/1 as well
as some additional features that enlarge your possibilities.
Each subset is nested inside the next higher one so that you
gradually build a 1larger and larger vocabulary in the extended
Fortran language. At each stage, as the special features of a
new subset are introduced, examples are worked out to explore the
increased power that is available.

THE SF/k SUBSETS

In a sense, the step-by-step approach to learning Fortran is
structured and reflects the attitude to programming that-we hope
you learn.

There is no substztute for practlce in learning to program,
SO as soon as possible and as often as possible, submit vyour
knowledge to the test by creating your own programs. |

WHY LEARN JUST A SUBSET?

The Fortran language is very.extensive; some features are
only used rarely or by a few programmers. If you know exactly
- what you are doing, then these features may provide a faster way
to program; otherwise they are better left to the experts. A
beginner cannot' really wuse all the features of the complete
Fortran language and will get 1lost in the complexity of the
language description. With a small subset it is much easier to
Pick up the language and then get on with the real job of
learning programming.)

CHAP. 1 INTRODUCTION TO PROGRAMMING 5

For Jlearners we need a fast compiler because, for many
programs, compiling is nearly all that happens; the execution %s
sometimes omitted or is very short because there are errors in
the program. A special compiler might be used for the SF/k
language and this could be small enough to run on some very
inexpensive computers often called minicomputers. But it is not
necessary to have an SF/k compiler to use the SF/k language since
it is a subset of the extended Fortran language of the Watfiv-S

compiler.

But perhaps most important, the SF/k 1language has been
selected from the extended Fortran language so as to provide
features that encourage the - user to produce well-structured
programs. This is why it is appropriate as a means of learning
structured programming.

CORRECTNESS OF PROGRAMS

One of the maddening things about computers is that they do
exactly what you tell them to do rather than what you want them
to do. To get correct results your program has to be correct.
When an answer is printed out by a computer you must know whether
or not it is correct. You cannot assume, as people often do,
that because it was given by a computer it must be right. It is
~the right answer for the particular program and data you provided
because computers now are really very reliable and rarely make
mistakes. But 1is your program correct? Are your input data
correct?

One way of checking whether any particular answer is correct
1s to get the answer by some other means and compare it with the
printed answer. This means that you must work out the answer by
hand, perhaps using a hand calculator to help you. When vyou do
work by hand you probably do not concentrate on exactly how you
are getting the answer but you know you are correct (assuming you
do not make foolish errors). But this seems rather pointless.
You wanted the computer to do some work for you to save you the
effort and now you must do the work anyway to test whether your
computer program is correct. Where is the benefit of all ~this?
The labor saving comes when you get the computer to use your
program to work out a similar problem for you. For example, a
program to compute telephone bills can be checked for correctness
by comparing the results with hand computations for a number of
representative customers and then it can be used on millions of
others without detailed checking. What we are checking is the
method of the calculation. |

We must be sure that our representative sample of test cases
includes all the various exceptional circumstances that can occur
in practice, and this is a great difficulty. Suppose that there
were five different things that could be exceptional about a
telaphone customer. A single customer might have any number of
exceptional features simultaneously. So the number of different

