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PREFACE

This book is based on a series of lectures that I gave at the Symposium on
Intuitionism and Proof Theory held at Buffalo in the summer of 1968.
Lecture notes, distributed at the Buffalo symposium, were prepared with
the help of Professor John Myhill and Akiko Kino. Mariko Yasugi assisted
me in revising and extending the original notes. This revision was
completed in the summer of 1971. At this point Jeffery Zucker read the first
three chapters, made improvements, especially in Chapter 2, and my
colleagues Wilson Zaring provided editorial assistance with the final draft
of Chapters 4-6.

To all who contributed, including our departmental secretaries, who
typed versions of the material for use in my classes. I express my deep
appreciation.

Gaisi Takeuti
Urbana, March 1975
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INTRODUCTION

Mathematics is a collection of proofs. This is true no matter what
standpoint one assumes about mathematics—platonism, anti-platonism,
intuitionism, formalism, nominalism, etc. Therefore, in investigating
“mathematics”, a fruitful method is to formalize the proofs of mathematics
and investigate the structure of these proofs. This is what proof theory is
concerned with. ”

Proof theory was initiated by D. Hilbert in his attempt to prove the
consistency of mathematics. Hilbert’s approach was later developed by the
brilliant work of G. Gentzen. This textbook is devoted to the proof theory
inspired by Gentzen’s work: so-called Gentzen-type proof theory.

Part I treats the proof theory of first order formal systems. Chapter 1
deals with the first order predicate calculus; Gentzen’s cut-elimination
theorem plays a major role here. There are many consequences of this
theorgm as for example the various interpolation theorems.

Wetlrove the completeness of the classical predicate calculus, by the
use of reduction trees (following Schiitte), and then we prove the
completeness of the intuitionistic predicate calculus, by adapting this
method to Kripke semantics.

Chapter 2 deals with the theory of natural numbers; the main topics are
Godel’s incompleteness theorem and Gentzen’s consistency proof. Since
the author believes that the true significance of Gentzen’s consistency
proof has not been well understood so far, a philosophical discussion is also
presented in this chapter. The author believes that the Hilbert-Gentzen
finitary standpoint, with “Gedankenexperimenten” involving finite (and
concrete) operations on (sequences of) concretely given figures, is most
important in the foundations of mathematics.

Part II concerns the finite order predicate calculi and mﬁmtary lan-
guages. In Chapter 3, the semantics for finite order systems, and the
cut-elimination theorem for them, due to Tait, Takahashi and Prawitz, are
considered. Since the finite type calculus is not complete, and further,
much of traditional mathematics can be formalized in it, we are anxious to
see progress in investigating the significance of the cut-elimination
theorem here. The significance of the systems with infinitary languages
which are presented in Chapter 4 is that they are complete systems in
which the cut-elimination theorem holds, while at the same time they are
essentially second order systems. The situation is, however, quite un-
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2 INTRODUCTION

certain for ¢ stems with heterogeneous quantifiers. Here we  »f ise a
basic system of heterogeneous quantifiers which seems reasonable and for
which so-called “weak completeness” holds. It seems, however, that our
system is far from complete. A system which is obtained from ours by a
slight modification is closely related to the axiom of determinateness (AD).
Therefore the problem of how to extend our system to a (sound and)
complete system is related to the justification of the axiom of deter-
minateness.

Let M be a transitive model of ZF+DC (the axiom of dependent
choices) which contains P(w). It has been shown that the following two
statements are equivalent: (1) AD holds in M; and (2) the cut-elimination
theorem holds for any M-definable determinate logic. This suggests an
interesting direction for the study of infinitary languages.

Part 111 is devoted to consistency proofs for stronger systems on which
the author has worked.

We have tried to avoid overlapping of material with other textbooks.
Thus, for example, we do not present the material in K. Schiitte’s
Beweistheorie, although much of it is Gentzen-type proof theory. Those
who wish to learn other approaches to proof theory are advised to consult
G. Kreisel’s Survey of Proof Theory I and II, Journal of Symbolic Logic
(1968), and Proceedings of the Second Scandinavian Logic Symposium, .
ed. J. E. Fenstad (North-Holland, Amsterdam, 1971), respectively. We
have made special efforts to clarify our position on foundational issues.
Indeed, it is our view that in the study of the foundations of mathematics
(which is not restricted to consistency problems), it is philosophically
important to study and clarify the structures of mathematical proofs.

Concerning the impact of foundational studies on mathematics itself, we
remark that while set theory, for example, has already contributed
essentially to the development of modern mathematics, it remains to be
seen what influence proof theory will have on mathematics.

No attempt has been made to make the references comprehensnve
although some names are attached to the theorems. In addition to those
given above, a few references are recommended in the cours: of the book.
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CHAPTER 1

FIRST ORDER PREDICATE CALCULUS

In this chapter we shall present Gentzen’s fermulation of the first order
predicate calculus LK (Jogistischer klassischer Kalkiil), which is con-
venient for our purposes. We shall also include a formulation of in-
tuitionistic logic, which is known as LJ (logistischer intuitionistischer
Kalkiil). We then proceed to the proofs of the cut-elimination theorems
for LK and LJ, and their applications.

§1. Formalization of statements

The first step in the formulation of a logic is to make the formal
language and the formal expressions and statements precise.

DEeFINITION 1.1. A first order (formal) language consists of the following
symbols.
1) Constants: .
1.1) Individual constants: ko, ki, ..., x5, ... (j=0,1,2,...).
1.2) Function constants with i argument-places (i=1,2,...):
fo.fi, ... fi,...(j=0,1,2,...). _
1.3) Predicate ¢onstants with i argument-places (i=0,1,2,...): Ry,
Ri{,...,R},...(j=0,1,2,...).
2) Variables:
2.1) Free variables: dg, @1,...,4;,...(j=0,1,2,...). ‘
2.2) Bound variables: xo,x,,_...,x ,...(j=0,1,2,...). e
3) Logical symbols:
—1(not), A (and), v (or), > (implies), V (for all) and 3 (there exists). The
first four are called propositional connectives and the last two are
called quantifiers.
4) Auxiliary symbols:
(,)and, (comma).

We say that a first order language L is given when all constants are
given. In every argument, we assume that a language L is fixed, and hence
we omit the phrase “of L”.

" There is no reason why we should restrict the cardinalities of various
kinds of symbols to exactly Ro. It is, however, a standard approach in-



6 FIRST ORDER SYSTEMS [cu. 1, §1

elementary logic to start with countably many symbols, which are ordered
with order type w. Therefore, for the time being, we shall assume that
the language consists of the symbols as stated above, although we may
consider various other types of lang.age later on. In any case it is essential
that each set of variables is infinite and there is at least one predicate
symbol.. The other sets of constants can have arbitrary cardinalities,
even 0.

We shall use many notational conventions. For example, the super-
scripts in the symbols of 1.2) and 1.3) are mostly omitted and the symbols
of 1) and 2) may be used as meta-symbols as well as formal symbols. Other
letters such as g, h, ... may be used as symbols for function constants,
while a, b, c, ... may be used for free variables and x, y, z, . .. for bound
variables. - .

Any finite sequence of symbols (from a language L) is called an
expression (of L).

DEFINITION 1.2. Terms are defined inductively (recursively) as follows:

1) Every individual constant is a term.

2) Every free variable is a term.

3) If f' is a function constant with i argument-places and t,, .. .,  are
terms, then f'(t,, ..., &) is a term.

4) Terms are only those expressions obtained by 1)-3). Terms are often -
denoted by ¢, s, t;,...:

Since in proof theory inductive (recursive) definitions such as Definition
1.2 often appear, we shall not mention it each time. We shall normally omit
the last clause which states that the objects which are being defined are
only those given by the preceding clauses.

DerINITION 1.3. If R is a predicate constant with i argument-places and
t,..., 4 are terms, then R(t;,...,¢) is called an atomic formula.
Formulas and their outermost logical symbols are deﬁned inductively as
follows:

1) Every atomic formula is a formula. It has no outermost logical
symbol.

2) If A and B are formulas, then (mA), (A A B), (A v B) and (A > B)
are formulas. Their outermost logical symbols are -, A, v and >,
respectively.

3) If Ais aformula, a is a free variable and x is a bound variable not
occurring in A, then Vx A’ and 3x A’ are formulas, where A’ is the
expression obtained from A by writing x in place of a at each occurrence
of a in A. Their outermost logical symbols are V and 3, respectively.

4) Formulas are only those expressions obtained by 1)-3).

Henceforth, A, B, C, ..., F, G, ... will be metavariables rangmg over
formulas. A formula w1thout free vanables is called a closed fo(mula ora

i



cH. 1, §1] FORMALIZATION OF STATEMENTS 7

sentence. A formula which is defined without the use of clause 3) is called
quantifier-free. In 3) above, A’ is called the scope of ¥Vx and 3Hx,
respectively.

When the language L is to be emphasized, a term or formula in the
language L. may be called an L-term or L-formula, respectively.

REMARK. Although the distinction between free and bound variables is
not essential, and is made only for technical convenience, it is extremely
useful and simplifies arguments a great deal. This distinction will, there-
fore, be maintained unless otherwise stated.

It should also be noticed that in clause 3) of Definition 1.3, x must be a
variable which does not occur in A. This eliminates expressions such as
Vx (C(x) A 3x B(x)). This restriction does not essentially narrow the class
of formulas, since e.g. this expression ¥x (C(x) A 3x B(x)) can be replaced
by Vy (C(y) A 3x B(x)), preserving the meaning. This restriction is useful
in formulating formal systems, as will be seen later. ,

In the following we shall omit parentheses whenever the meaning is
evident from the context. In particular the outermost parentheses will
always be omitted. For the logical symbols, we observe the following -
convention of priority: the connective — takes precedence over each of A
and v, and each of A and v takes precedence over . Thus "A A B is
short for (MA)A B, and AA B> Cv D is short for (AA B)>(Cv D).
Parenthesgs are omitted also in the case of double negations: for example
—A abbreviates (1 A). A= B will stand for (A > B) A (B> A).

DeriNITION 1.4, Let A be an expression, let 7,..., 7, be distinct
primitive symbols, and let oy, . .., 0, be any symbols. By
(A ’T],...,’Tn)
O1y...,0n
we mean the expression obtained from A by writing o3, . . ., 0, in place of
Ti,..., T, Tespectively, at each occurrence of 7,..., 7, (where these

symbols are replaced simultaneously). Such an operation is called the
(simultaneous) replacement of (71, ..., ,) by (o4, ..., 0,) in A. It is not
required that 7y, ..., 7, actually occur in A.
ProrosiTION 1.5, (1) If A contains none of 7, ..., 7,, then
(A T],...,Tn)
O1y...,0n

is A itself.
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(2) If a1, . . ., 0, are distinct primitive symbols, then
((AT,,...,T,.)Ul,...,O'n) .
O1,...,0, 01,...,8,. . B

is identical with
(ATI,-..’TH),
6:,...6,

DEFINITION 1.6. (1) Let Abe aformulaand t,, .. ., t, be terms. If there is
a formula B and n distinct free variables by, . .., b, such that A is

( b,..., b, )

P
then for each i (1 =< i< n) the occurrences of ¢ resulting from the above
replacement are said to be indicated in A, and this fact is also expressed
(less accurately) by writing B as B(by,..., b,), and Aas B(t,,...,t). A
may of course contain some other occurrences of &; this happens if B
contains . "

(2) We say that a term ¢ is fully indicated in A, or every occurrence of t
in A is indicated, if every occurrence of ¢ is obtained by such a
replacement (from some formula B as above, with n =1 and t = §).

It should be noted that the formula B and the free variables from which
A can be obtained by replacement are not unique; the indicated occur-

rences of some terms of A are specified relative to such a formula B and
such free variables.

ProrosiTiON 1.7. If A(a) is a formula (in which a is not necessarily fully
indicated) and x is a bound variable not occurrmg in A(a), then Vx A(x)
and 3x A(x) are formulas

Proor. By induction on the number of logical symbols in A(a).

In the following, let Greek capital letters I', A, IT, A, Iy, I, . . . denote
finite (possibly empty) sequences of formulas separated by commas. In
order to formulate the sequential calculus, we must first introduce an
- auxiliary symbol —.

DEeFINITION 1.8. For arbitrary I and A in the above notation, I'— A is
called a sequent. I' and A are called the antecedent and succedent,
" respectively, of the sequent and each formula in I" and A is called a
sequent-formula.
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lntuitivély, a sequent A ...,A,—B),...,B, (where m,n=1)
; _means: if Aijn...AA,, then Bijv...vB,. For m=1,  A,,..., A,—
means that A, A ... A A, yields a contradiction. For n=1,— By, ..., B,

means that B, v...v B, holds. The empty sequent— means there is a
contradiction. Sequents will be denoted by the letter S, with or without
subscripts.

§2. Formal proofs and related concepts

DEFINITION 2.1.'An inference is an expression of the form

S o S8

S s ’
where S;, S; and S are sequents. S; and S, are called the upper sequents
and S is called the lower sequent of the inference.

Intuitively this means that when S; (S; and S,) is (are) asserted, we can
infer S from it (from them). We restrict ourselves to inferences obtained
from the following rules of inference, in which A, B, C, D, F(a) denote
formulas. '

1) Structural rules:
1.1) Weakening:

Ir'-A r-4a

left : b"—r'_)—A 5 right : m .

~

D is called the weakening formula.
1.2) Contraction:

D,D, >4 r-A,D,D

left : D.I—A4° right : ISAD

1.3) Exchange:

I,C,D, II- A . I'-A,C,D, A
—_—; right: ———

left: T CcIisa: I>A.D.C A

We will refer to these three kinds of inferences as “weak inferences”, while
all others will be called “strong inferences”.
1.4) Cut:

r-A4A,D D, IT— A
Ii—A A ’

D is called the cut formula of this inference.
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2) Logical rules:

r-4a,p D, I'—A

:\_D—,—F:A_— ; ~1:right: TFIASD

2.1) —ileft: .
) Tile "> A4,"D

D and D are called tke auxiliary formuta and the principal
formula, respectively, of this inference.

C.I'>A D, I'—4
2.2 : R S et B Nl
)kl oA ™ Sabroa’

r-a4,c I'-A4,D
I'-A,CaAD

A :right:

C and D are called the auxiliary formulas and C A D is called the

*

principal formula of this inference. Ty

C,T>A D, I>4

2.3) v :left: CvD.IT=4’

I'-AC I'-A,D

vinght: =7 evp ™ TSa,cvp

C and D are called thé auxiliary formulas and C v D the principal
formula of this inference.

I'-4,C D, JI->A

2.4) o:left: CoDTTI=AA’
... CTI'->AD
S :right: TSA C;D'

C and D are called the auxiliary formulas and C > D the principal
formula.

2.1)-2.4) are called propositional inferences.

F@), I'—- A
VxF(x), - A’

I'—> A, F(a)

2.5) V:left: —I-_,:—A—,Vx—F(x) ,

V :right:

where ¢ is an arbitrary term, and a does not occur in the lower
sequent. F(f) and F(a) are called the auxiliary formulas and
Vx F(x) the principal formula. The a in V right is called the
eigenvariable of this inference.

Note that in V : right all 6ccurrences of a in F(a) are indicated. In V : left,
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F(t) and F(x) are
(F@%) and (F@ ;‘f) ,

respectively (for some free variable a), so not every ¢t in F(f) is necessarily
indicated.

F(a), '— A . I'— A, F(1)
2.6 tleft: ———————— : g e
) 3:lef AxF(x), - A’ 3: right I'- A,3xF(x)’

where a does not occur in the lower sequent, and ¢ is an arbitrary
term. ‘ ’

F(a) and F(t) are called the auxiliary formulas and 3x F(x) the
principal formula. The a in 3 : left is called the eigenvariable of
this inference.

Note that in 3 : left a is fully indicated, while in 3 : right not necessarily
every t js indicated. (Again, F(¢) is (F(a)%) for some a.)

2.5) and 2.6) are called quantifier inferences. The condition, that the
eigenvariable must not occur in the lower sequent in V : right and 3 : left,
is called the eigenvariable condition for these inferences.

A sequent of the form A— A is called an initial sequent, or axiom.

We now explain the notion of formal proof, i.e., proof'in LK.

DEFINITION 2.2. A proof P (in LK), or LK-proof, is a tree of sequents
satisfying the following conditions:

1) The topmost sequents of P are initial sequents.
2) Every sequent in P except the lowest one is an upper sequent of an
inference whose lower sequent is also in P,

The following terminology and conventions will be used in discussing
formal proofs in LK. '

DEeFINITION 2.3. From Definition 2.2, it follows that there is a unique
lowest sequent in a proof P. This will be called the end-sequent of P. A
proof with end-sequent S is called a proof ending with S or a proof of S. A
sequent § is called provable in LK, or LK-provable, if there is an LK-proof
of it. A formula A is called LK-provable (or a theorem of LK) if the
sequent — A is LK-provable. The prefix “LK-" will often be omitted from
“LK-proof” and “LK-provable”. '
A proof without the cut rule is called cut-free.

It will be standard notation to abbreviate part of a proof by “i-". Thus,



