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Preface

This book is intended as a text for a one-term or one-quarter course in
nonlinear systems, at either the first-year graduate or senior-graduate
level; it is almost self-contained and hence suitable for self-study. The
only prerequisite for using the book is a course in ordinary differential
equations. It is generally not necessary for the reader to have had a
course in linear systems, though it is perhaps helpful to have an under-
standing of the concept of the state of a system. The contents of the
book should be of interest to engineers from all branches who are inter-
ested in the systems approach, as well as to applied mathematicians,
mathematical economists, biologists, et cetra. The results developed in
the book are of a sufficiently general nature as to be applicable to all of
these disciplines. Most of the important techniques for the analysis of

- nonlinear systems are covered in the book, though the coverage is by no

means encyclopaedic. One of the novel features of the book is a chapter
on input-output stability, presented at an elementary level for the first -
time.

The first version of this book was written in 1973, while I was
visiting UCLA. Subsequent drafts were classroom-tested at both
Concordia University and UCLA. In addition, portions of the book
were also used at Berkeley for one quarter. Generally, the classes con-
sisted of graduate students in both engineering and mathematics. This
experience revealed that the entire book can be covered in about fifty
classroom hours, while most of it can be covered in forty hours.



X . Preface

The book contains five chapters besides the introduction. Chapter
2 contains a discussion of various phase-plane techniques for the analy-
sis of second-order systems. In chapter 3, the reader is introduced to
some basic mathematical tools“such as normed spaces, contraction
mapping theorem, etc; this is followed by statements and proofs of the*
_ basic existence and uniqueness theorems for nonlinear differential
equations, and some useful solution estimates. Chapter 4 consists of an
introduction to several commonly used approximate, analysis tech-
niques. Chapter 5 contains a thorough treatment of Liapunov stability,
including the Lur’e problem. Finally, chapter 6 comprises an elementary
discussion of input-output stability, including the Nyquist, circle, and
Popov criteria for feedback systems. There are numerous examples and
exercises throughout. Two appendixes close the book.

It is now my pleasure to acknowledge all those who helped me in
the writing of this book. I would like, first of all, to thank my wife
Shakunthala for her encouragement and complete moral support
throughout this project. Thanks are also due to Professor Charles A.
Desoer for his thorough review of the manuscript and numerous con-
strictive comments, as well as to Professor E. I. Jury for class-testing
the manuscript and for several useful suggestions. I)thank Professor
M. N. S. Swamy and Dean J. C. Callaghan, both of Goncordia Univer-
sity, for providing excellent logistic support as well/as for their moral
support. Professor A. V. Balakrishnan is to be thanked for making
possible my visit to UCLA, during which this project was started. '
Finally, thanks to Veronica Markowitz and Jun¢ Anderson for their
excellent typing. ' '

Montreal ’ M. VIDYASAGAR



Notes to the Reader

1.

All items within each section of each chapter (equations, theorems,
examples, etc.) are numbered consecutively. A reference such as
“Theorem (17)” refers to the 17th/item within the same section. If a
reference is made to an item in another section, the full number is
given, e.g. example [5.1(13)] means example (13) in Sec. 5.1.

. In some places, we write, e.g.

= ”lﬁ
¢ = tan x

This means that ¢ is the unique number in [0, 27) such that
i = ————£Z_‘-’ = _.A__._
A& B L A € i

Thus tan~! is a function of both variables x, and x,, and not just of
the ratio x,/x,. Note that tan~' is well-defined everywhere in R
except at (0, 0).
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Introduction

1.1
GENERAL CONSIDERATIONS

Nonlinear physical systems, that is, systems that are not necessarily
linear, differ from linear systems in two important respects:

1. Generally speaking, one can usually obtain closed-form
expressions for solutions of linear systems, whereas this is not
always possible in the case of nonlinear systems. More often,
one is forced to be content with obtaining sequences of approxi-
mating functions that converge to the true solution. or with
generating estimates for the true solution. As a result, one may

' not have a good “feel” for what makes a nonlmear system
~ “tick,” compared with a linear system.

2. The analysis of nonlinear systems generally involves mathe-
matics'that is more advanced in concept and more messy in
detail than is the case with linear systems.

A mathematical model that describes a wide variety of physical

nonlinear systems is an nth-order ordinary differential equation of the

type

d:;‘;st) = h[t, Yo 5@, .. L ,,.y 20, u(t):l 120

where 7 is the time parameter, u(.) is the input function (the terms
control function and forcing function are also used), and y(.) is the

-
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output function (or':respon.-v_e Junction). If we define the auxiliary
functions

x,(t) = y(@)
x,(t) = y(1)
t
 nn =220
A
. then the single nth-order equation (1) can be equivalently expressed as
“a-system of n first-order equations:
() = x,00)
x,(1) = x;5(t)
Xp-1(8) = x,(0)
%,(0) = Alt, x,(0), X,(8), - - . , x,(0), u(@)]

Finally, if we define n-vector-valued functions x(-): B, — R* and
f:Ig+ X R* X R~ R" by

©x(0) = [x,0), x,(0), . .., X, O
e, X, u) =1x5, X3, . .., X A(t, Xy, oo oy X0 D))

then the r first-order equations\(S).-(8) can be combined into a first-

. order vector differential equation, namely,

-x() = f[t, x(), u(®)], =0

For the system described by (1), the n quantities x, through x, con-

stitute a set of state variables, and the vector X constitutes a state vector.
Similarly, suppose a system with p inputs and k outputs is

described by a set of k ordinary differential equations of the form

IO — hft, yu 5O -2 YO 70
LRl O SRS ) NS SO}
u, (), ..., u, @), i=1...,k
where u(+), . .., u,(+) are the input functions and y,(-),..., y:(:)
are the output functions. As before, define

-1
Imi )= SOt i =0,k
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x(t) = [%,0) - - . 5,01
o) = [u.(1) ... 0,

where we take m, = 0, and define
n=m;+ ...+ m,
Then x(z) is a state vector for the system described by (12), and the

system of equations (12) can once again be equivalently represented by a
single first-order vector differential equation of the form

(@) = f[t, x(t),u@)], >0

With this background in mind, we shall devote much of this book
to the study of systems described by an equation of the form (17).!
For (17) to truly represent a physical system, we would expect that,
corresponding to each input u(.),
1. (17) has at least one solution (existence).
2. (17) has exactly one solution (uniqueness).
3. (17) has exactly one solution that is defined over the entire
half-line {0, o). '
4. (17) has exactly one solution over [0, o), and this solution
depends continuously on the initial condition x(0).
Statements 1-4 are progressively stronger. Unfortunately, without-
some restrictions on the nature of the function f, none of these state-
ments may be true, as illustrated by the following examples.

Example. Consider the scalar differential equation
#r) = —sign x(t), > 0; ‘x((})/ =0
{1 ifx>0 i
x(1) = A
—1 ifx<o0

It is easy to verify that no continuously differentiable function x(+)
exists such that (19) is satisfied. Thus statement 1 does not hold for this
system.

Example. Consider the scalar differential equation

=g 120, xO=0

This equation admits two solutions, namely,

1The exception is Chap. 6, where we shall study distributed systems, e.g., sys- ’
tems containing time delays.
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x,(t) =12
x(f) = —'2
Thus statement 1 is true, but 2 is false.
Example. Consider the scalar diﬁ'e’rential equation
x@® =1+ x*), t>0; x(0)=0
Then over the interval [0, 1), this équation has the unique solution
.x(t) = tan ¢

but there is no continuously differentiable function x(.) defined over
all of [0, o) such that (26) holds. Thus for this system statements 1
and 2 are true, but 3 fails.

It is therefore clear that the questions of existence and unique-
ness of solutions to (17), and their continuous dependence on the initial
condition, are very important. These questions are studied in Chap..3.

In the last two examples, it was possible to derive the closed-form
solutions to the equations under study, because they were of an
extremely simple nature. However, in most cases, one cannot obtain

"an exact solution to the differential equation describing the system

behavior. In such cases, one must be content either with generating
“approximate” solutions or with solution bounds, which tell us that
the solution at any time lies in a certain region of the state space.
Both of these are studied in Chaps. 3 and 4.

An important question is that: of the well-behavedness, in some -

suitable sense, of the solutions to (17). This is usually called the question
of stability. Ideally, we would like to know whether or not the solutions
to (17) are well behaved without actually solving the system equations
(17). The stability question is studied in depth in Chaps. 5 and 6.

Finally, as a prelude to these more advanced subjects, we shall
study second-order systems in Chap. 2. As we shall see there, a “geo-
metric” approach to second-order systems yields much intuition and
insight.

Problem 1.1.. Determine whether or not each of the following differ-

‘ential equations has a unique solution over [0, ), and if so, whether this

solution depends continupusly on the initial condition.
(@ 1) =[x@1'3;  x(0) =
(b) x(t) = —x*1), x0) = —

—x(t) if x() <0}.

. ;. x(0)=0
x2(t) if x(®) <O

@ 0 =




Sec. 12 Autonomy, Equilibrium Points 5

1.2

AUTONOMY, EQUILIBRIUM POINTS

In this section, we shall introduce two definitions that are frequently
used in the sequel. Before proceeding to these definitions, we shall clear
up one small point. Many of the definitions, theorems, etc., that follow
are stated for differential equations of the type

(1) = 11, x()] |
Comparing (1) with (17) of Sec. 1.1,2 we see that in [1.1(17)] the depen-
dence of the right-hand side on an input u(.) is explicitly identified,
whereas this dependence, if any, is suppressed in (1). This might mislead
one into thinking that [1.1(17)] describes a “forced” system, whereas
(1) describes an “unforced” system. However, this is not necessarily
the case. In problems of system analysis, as opposed to optimal control
problems, one is generally concerned with the behavior of a system of
the form [1.1(17)] under a fixed known input. Thus suppose that, in
[1.1(17)), u(.) is a known fixed function, and define f,: R, X R* — R"
by ‘ .

£,(1, x) = 1[t, x, u(®)]

Then {1.1(17)] can be rewritten as

X(l) = f-[t’ X(t)] ’
which is of the form (1). Therefore (1) can representeither an “unforced”
system or a system with a fixed input.

We shall now introduce two concepts.

[definition] The system described by (1) is said to be autonomous
if f(¢, x) is independent of 7 and is said to be norautonomous other-
wise.

[definition] A vector X, € R* is said to be an equilibrium
point at time t, € R, of (1) if

f(r,x)) =0, V>t

If x, is an equilibrium point of (1) at time ¢, then it is clear that
X, is also an equilibrium point of (1) at all times ¢, > ¢,. Furthermore,
if (1) is autonomous, then x, € R* is an equilibrium point of (1) at
some time if and only if it is an equilibrium -point of (1) at all times.
Therefore we may speak of an equilibrium point of an autonomous
system without specifying the time.

2Hereafter referred to as [1.1(17)).
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The physical signiﬁcahce of an equilibrium point is as follows:
Suppose x, € R" is an equilibrium point of -(I) at time #,. Then,
whenever ¢, > t,, the equation .

x(@) =, x(), t>1t;  x(t,)=x,
has the unique solution

) x(8) = X,, Vit ‘
Conversely, if an element x, € R" has the property that the unique

solution of (7) is given by (8) whenever ¢, > t,, then it follows by’

simple differentiation that x, satisfies (6), i.e., that x, is an equilibrium

_ point of (1) at time 7,. Thus, in other words, x, is an equilibrium point

of (1) at time ¢, if, should any solution x(.) of (1) assume the value x,
at some time ¢, > t,, it then remains at that value x, for all ¢t > ¢,.
The terms stationary point and singular point are also used in place. of

- equilibrium point.

Example, Consider the motion of a frictionless simple pendulum,

and let @ denote the angle of the pendulum from the vertlcal Then the

motion of the pendulum is described by
[10) + sin §(r) =

where g is the acceleration due to gravity and / is the length of the
pendulum. If we define

X3 (t) 0 (’)
) = [xz(z)] [a(,)]

then the dynamics of the system are described by.the state variable

equations

[*1(’)] _ ,: x () ]
%0 L—efl) sinx,()
Notice first of all that the system is autonomous. Next, we have that
Xo = [x;0 X,,) is an equilibrium point of (12) if and only if
20 =0
sinx,, =0

i.e., the set of equilibrium points of (12) is the set of points in R? of the
form

(nn, 0), where n =0, 41, 12, ...

3Notice that we need not specify the time because the system is autonomous,
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Because we commonly identify two values of § that differ by a multiple
of 2x, this system has basically two equilibrium points, namely (0, 0)
and (0, m). Of these, the first equilibrium peirt corresponds ‘to the

" pendulum hanging straight down, while the second equilibrium point

corresponds to the pendulum being at rest pointing straight up. Of
course, we do not ever expect to find a real pendulum at rest pointing
straight up, because the slightest perturbation (such as wind drafts
present in the room) would knock the pendulum out of this equilibrium
‘position. This is intimately connected with the question of the stability
of an equilibrium point, which is studied in Chap. 5.

v Example. Consider the one-dimensional motion of a particle in
A potential field. Let r denote the position of the particle, m the mass
of the particle, and p(r) the potential energy at r. We assume that p(r)
is a continuously differentiable function of r. The motion of the particle
is described by ’

2oy — 1 dp(§) [r®
Ch e S

where f (r)'= dp(r)/dr denotes the force at r. To obtain a state variable
description, define

| * () All ®
=) = l:xz(t)] = [r'(t)]

Then the state equations are.

[x,(r)} _ [ x4(t) ]
x2(0) HENG)
From (19), we see that the set of equilibrium points of this (autonomous)
system consists of all points of the form (4, 0), where f(r,) = 0. There-
fore this system is in an equilibrium $tate if the particle has zero velocity

and is at a position where the force is zero, i.e., if the potential energy
is stationary.

N

[definition] An equilibrium point x, at time ¢, of (1) is said
to be isolated if there exists a neighborhood N of x, in R* such
that N contains no equilibrium points at time 7, of (1) other
than x,,.

Example. Both the equilibrium points of the system in Example
(9) are isolated. In the system of Example (16), an equilibrium point
(o, 0) is isolated if and only if r, is an isolated zero of the function
(), i.e., if there exists a § > 0 such that f(r) = 0 whenever 0 <
lr —ro| <é. '

\
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Example. Consider the linear vector differential equation
()= A@x@), >0
Clearly 0 is an equilibrium point of (23) at all times 7, > 0. Suppose
now that A(¢,) is nonsingular for some #,. This means that A(f,)x = 0

implies x = 0. In this case, 0 is the only equilibrium point at time 7,
of (23) and is hence isolated.

fact Consider the system (1), and suppose X, is an equilibrium point at
time ¢, of (1); i.e., suppose (6) holds. Suppose further that f (to, -) is con-
tinuously différentiable, and define -

A(I ) af(‘o. x)

X =Xg

If A(to) is nonsingulaf, then x, is an isolated equilibrium point at time ¢,
of (1).

proof Foreachx =[x;...x,] in Rﬁ, define
» 2 1/2 :
Ixils = (£ ##)
The real number || x ||, is known as the Euclidean norm of the vector x.4 If
A(t,) is nonsingular, then there exists a positive constant ¢ such that

AWl =cllx|l;, S ¥V X€ER®

Because f(¢,, -) is continuously differentiable, we can expand f(t,, x) in
the form

f(to, x) = f(t(h xo) + A(’O)(x - Xo) + l'(fo, X)

where the “remainder” term r(¢,, -) sati_sﬁes the condition
[l r(te, )1l _ 0
tx—xls—~0 || X — Xoll2 -
However, because X, is an equilibrium point at time 7, of (1), we

have f(to, Xo) = 0; therefore, :

£(20, X) = A(to)(x — Xo) + 1(fo, X)
Now, pick a number d > 0 such that

|| r(to. X)”z

whenever X —X <d
II_X——ToIr IIx = xoll2

Such a choice for d is always possible in view of the limit condition (29).
Let N be the neighborhood of x, defined by
={x € R|lx — xoll: <d}

4A detailed discussion of norms, including the explanation for the subscript
2, is found in Chap. 3. For the present, it is enough to note that ||x|l2 > 0 whenever
x#%0.
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We shall show that N contains no equilibrium points at time ¢, of (1) other
than x,. By definition (20), this is enough to show that x, is isolated.

Accordingly, suppose x € N and x # X,; we shall show that
f(to, x) 7 0. We have, whenever ||x — x| < d, that

3 ||f(’o, x) |2 = [|A(to)(x — Xo) + r(to, X) |}
= ||A(fo)(x — Xo)|lz — |lr(to, X) 2

>cllx = Xolh — 5 lIx — x|k,
4
= —2‘”7‘ — Xoll2

> 0 whenever x # xg

Hence, whenever x € N and x # x,, we have ||f(to, X)|l, > 0, i.e,
£(to, X) 3= 0. Thus N contains no equilibrium points at time ¢, of (1) other

than x,, and therefore x, is isolated. -

Problem 1.2. For the Volterra predator-prey equations
Xy = ax, + byxyx;
xz = dayX; + b2x1X2

(a) Show that (0, 0) is an equilibrium point.
(b) Show that (0, 0) is an lsolated equilibrium point if and only 1f both
a, and a, are nonzero.

Problem 1.3. Consider the tunnel-diode circuit of Figure 1.1, where
is = v4 — 203 + 3 2@,

vy G s = 1F

FiG. 1.1 { <

(a) Show that the voltage v; is governed by the equation

dTv; = —Gvg — f(va)

(b) Find all the equillbnum points of this system when (i) G =0,
(ii) G = 0.1, (iii) G = 1.



