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Preface

The rapid growth of the study of natural products in recent years has been
accompanied by the publication of numerous specialist monographs on
alkaloids, carbohydrates, coumarins, acetylenes, terpenes, etc., and there
are several on biosynthesis. In contrast general texts covering the whole field
no longer exist, and a comprehensive work would be enormous. This
volume aims to partly fill the gap in a modest way by describing what has
been happening in the main areas of natural products research during
approximately the last ten years. The emphasis is entirely on the structure,
chemistry, and synthesis of natural products with only passing reference to
biosynthesis.

R.H. Thbmson
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1 Carbohydrates

J.S. BRIMACOMBE

During the past decade there has been unprecedented growth in syntheses that
involve carbohydrates. This upsurge of activity can be attributed to a number
of factors. First, the discovery of sugars of unusual structures, for example, L-
evernitrose’ (1) and D-aldgarose? (2), as components of antibiotic substances
has presented the carbohydrate chemist with unusually difficult synthetic tar-
gets. Second, there has been exceptional activity in the total synthesis of other
classes of natural product (for example pheromones and macrolide anti-
biotics) using ‘chiral templates’ derived from carbohydrates.® Third, the
oligosaccharide chains of glycoconju@tes which inélude glycelipids and
glycoproteins, are now known to have mportant roles in cellular biology,
including, among others, 1ntemellnlar recogmtlon the transportation of
proteins between cells, the specificity of the immune reaction, and as receptors
for enzymes, hormones, proteins, and viruses. Since biogenic material is often
difficult to obtain, considerable efforts®:® are now being directed towards the
synthesis of part or whole of the oligosaccharide chains of glycoconjugates in
order that their biological functions can be studied in depth. One of the aims
of this chapter is to give a broad impression of what has been achieved in these
areas.

Carbohydrates possess a higher density of funcr. onal groups than any other
class of compound, so that protection of one or more of these groups (usually
hydroxyl groups) .is of fundamental importance to any synthetic strategy.
Temporary protecting groups developed for use with other hydroxylic
compounds are used increasingly in carbohydrate chemistry,” but, as will be
seen later, others (for example, allyl and related ethers®) have been devel-
oped specifically to endow an added flexibility to syntheses involving
carbohydrates.

The protection of carbohydrates as cyclic acetals is of long-standing and

1



2 - THE CHEMISTRY OF NATURAL PRODUCTS

.. 0

) (2) (3}

enduring importance in carbohydrate chemistry.® It is easy to see why, for
example, 1,2:5,6-di-O-isopropylidene-a-p-glucofuranose (3), which is readily
prepared by acid-catalysed acetonation of D-glucose,® has been such a
popular starting material for the synthesis of many other sugars.3-'° The
isolated hydroxyl group on C-3 of 3 can be protected or modified prior to
exposure of the hydroxyl groups on C-5 and C-6 by selective hydrolysis of the
5,6-0O-isopropylidene group with acid. Differences between the reactivities of
_the primary hydroxyl group on C-6 and the secondary hydroxyl group on C-5
can then be exploited in effecting further modifications at these positions.
More vigorous acidic hydrolysis removes the 1,2-O-isopropylidene group,
thereby exposing the hydroxyl group on C-2 and, if the molecule reverts to a
pyranose ring, the hydroxyl group on C-4. Such procedures, in which cyclic
acetals have fulfilled the fundamental role of a protecting group, are
commonplace in syntheses involving carbohydrates. During the past few
years, procedures for the regioselective (even regiospecific) cleavage of cyclic
acetals in a synthetically useful way have been introduced into carbohydrate
chemistry, so that these groups assume a much more active role in the route to
the target molecule—in this context, cyclic acetals may be regarded as
functional groups.!! Some aspects of the chemistry of cyclic acetals, which
have had a decisive influence on the structural modification of carbohydrates,
and other useful reactions and protecting groups are discussed in the
following sections. '

‘

1.1 Cyclic acetals as functional groups
1.1l Halogenation

An important method for the structural modification of carbohydrates is
founded on the cleavage of O-benzylidene acetals by N-bromo-
succinimide.'>''3  Thus, treatment of methyl 4,6-O-benzylidene-a-D-
glucopyranoside (4, R =H) and its derivatives 4 (R = Bz or Ms) with N-
bromosuccinimide in refluxing carbon tetrachloride, in the presence of barium
carbonate. gave the corresponding methyl 4-O-benzoyl-6-bromo-6-deoxy-a-
p-glucopyranoside (5) regiospecifically and in good yield. This reaction can be
conducted in the presence of a wide range of other groups (O-mesyl, -tosyl,

)
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4 THE CHEMISTRY OF NATURAL PRODUCTS

-acetyl, -benzoyl, N-acetyl, and a-epoxides), and is often followed by reductive
cleavage of the 6-bromo group to give the corresponding 6-deoxy sugar. The
first step of the reaction appsars to involve attack by N-bromosuccinimide (or
bromine) on the acetal carbon atom, probably by a free-radical process (a
free-radical initiator is sometimes included!3), to give the gem-bromoacetal 6
(Scheme 1). This is followed by rearrangement of 6 to the benzoxonium ion 7,
which is then attacked by bromide ion to give the 4-O-benzoyl-6-bromo
derivative 5. The reaction provided the means for generating the required
L-lyxo stereochemistry in an efficient synthesis of L-daunosamine (8), the
carbohydrate constituent of the antitumour antibiotics adriamycin and
daunorubicin, from p-mannose (Scheme 2).1*

N-Bromosuccinimide reacted with the L-rhamnoside 2,3-O-benzylidene
acetal 9 to yield!3 the 3-bromo derivative 11, despite the strong syn-axial
interaction that develops during the attack of bromide ion at C-3 of the 2,3-
benzoxonium ion 10. Conformational factors or the reluctance of pyranoside
derivatives to undergo nucleophilic attack at C-2 have been invoked to explain
the regiospecificity of this and related reactions.®

Me
Me gr 0
MeO
(o] O +
Ph Ph ‘ (1)
® (10)

On the basis of these results, the diacetal 12 (R = Me) might be expected to
react with N-bromosuccinimide to give the 3,6-dibromo derivative 15, via
the 2,3-benzoxonium ion 13. In fact, the isomeric dibromo derivatives 16 and
17 were also formed,'” in all likelihood by ring-opening of the 3,4-
benzoxonium ion 14 resulting from rearrangement of 13 (Scheme 3). The
dibromo derivatives 15-17 can be reduced collectively to a separable mixture
of the dideoxy sugars 18 (methyl a-tyveloside) and 19,!% so that an effective
procedure for the deoxygenation of mcthyl o-D-mannopyranoside at
positions 3 and 6 is available.

Regiospecificity was observed in the ‘reaction of the diacetal 12 (R = Me)
with triphenylmethyl fluoroborate (a strong hydride-acceptor), the only ion
formed being 20.'® On the addition of tetraethylammonium bromide, 20
underwent regiospecific ring-opening to give the 3-bromo compound 21 in
507; yield. Other examples of the formation of halogenated carbohydrates
from 1,3-dioxolanylium ions have been comprehensively reviewed.!!
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1.1.2 HAydrogenolysis

1,3-Dioxolanes and 1,3-dioxanes are stable to the action of lithium
aluminium hydride and sodium borohydride,!® but they can be cleaved® with
a so-called ‘mixed hydride’, usually a mixture of LiAIH, and AICl;. The
identity of the ‘mixed hydride’ depends on the proportions of Lewis acid and
hydride used ; when LiAlH, and AICl, are used in a ratio of I :1, for example,
the reactive species is probably AIH,C1.2* The polar effects that influence the
direction of cleavage of 1,3-dioxolanes and 1,3-dioxanes with ‘mixed
hydrides’ have been extensively examined, 22! but, as the following examples
will show, steric factors may also be involved.

The direction of hydrogenolysis of the 4,6-O-benzylidene group of
hexopyranosides is determined primarily by the nature of the substituent on
O-3, but is not dependent on the anomeric configuration or the nature of the
substituents at O-1 and -2.22 Hydrogenolysis of methyl 4,6-0-benzylidene--
D-glucopyranoside 4 (R = H), for example, with a one-molar equivalent of
LiAIH,-AlCl; (1:1 ratio) in an inert solvent gave 2% a mixture of the 4 and 6-
O-benzyl compounds 22 and 23, respectively, in a ratio of 3:2, whereas the 3-
O-benzyl- and 2,3-di-O-benzyl-D-gluco- and -D-manno-pyranoside deri-

OH o8zi
i, LiATH = ALy 0 o
4IR=H) ——e—m  B2ID 4+ MO
i, “z°
’ H HO HO
OMe H
. OMe
(22) (23)
Ph ' :
° 0 ' OH
° R3 i LAl — atct BzIO Rg
B2iO &/ ii 0 5210 o
R* 3
2 R
R Rz
(24) 25)
Rl RZ R3 RQ
B-D-gkco OBzl H H  oOBal
-~ D= gheo H OoPh H OBzl
H OMe H OBzl
H OMe H OH
H 0Bzl OB2l H

o~ D~ moamno
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