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Foreword

This book presents recent studies on the mechanisms of fracture in ceramic
materials—~the effects of toughening, machining, and shock. Research on tough-
ening mechanisms, machining and surface damage, thermal shock and general
aspects of fracture in ceramic materials is described. Quantitative models of the
various fracture processes have been developed, Special emphasis has been placed
on the toughening that occurs in the presence of microcracks.

During the last decade, research on the fracture of monolithic single phase and
multiphase ceramic polycrystals has attained a maturity which now permits
many fracture phenomena to be quantitatively described. Specifically, the pre-
dominant fracture-initiating flaws have been identified and the fundamental
mechanics and statistics related to their fracture severity have been determined.
{n addition, the crack growth resistance exhibited by common ceramic micro-
structures cah now be expressed in quantitative terms, through the development
of micromechanics models of transformation toughenlng, microcrack toughen-
ing, and deflection toughening.

As a result, the next research frontier in the field of advanced monolithic cer-
amics undoubtedly resides in studies of the processing of optimum microstruc-
tures (as identified by the mechanics descriptions). Progress in this area is sum-
marized in this book.

The four main subject areas of the book are toughngss/microstructure inter-
actions, machining damage, thermal fracture and reliability, and impact dam-
age. Each part contains papers describing work completed in 1983 by researchers
in that particular subject area.

The information in the book is from Micro and Macro Mechanics of Fracture in
Ceramics, edited by A.G. Evans of the University of California Department of
]
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vi Foreword

‘Materials Science and Mineral Englneenng for the U.S. Offnce of Naval Research,
November 1983. ‘

The table of contents is organized in such-a way as to serve as a subject index
and provides easy access to the information contained in the book.

Advanced composition and production methods developed by Noyes
Publications are employed to bring this durably bound book to you
in a minimum of time, Special techniques are used to ciose the gap
between “manuscript” and ““completed book.” In order to keep the
price of the book to s reasonable level, it has been partially repro-
duced by photo-offset directly from the original report and the cost
saving passed on to the reader. Due to this method of publishing
certain portions of the book may be less legible than desired.

NOTICE

The materials in this book were prepared as ac-
counts of work sponsored by the U.S. Office of
Naval Research. Publication does not signify thal
the contents necessarily reflect the views and poli-
cies of the contracting agency or the publisher, nor
does mention of trade names or commercial prod-
ucts constitute endorsement or recommendation
for use,
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INTRODUCTION

Research on the fracture of monolithic single phase and
multiphase ceramic polycrystals during the Tast five to ten years has
attained a maturity that now permits many fracture phenomena to be
quantitatively described. Specifically, the predominant fracture
initiating flaws have been identified and the fundamental mechanics and
statistics related to their fracture severity have been determined., In
zddition, the crack growth resistance proferred by common ceramic
microstructures can now be expressed in quantitative terms, through the
development of micromechanics models of transformation toughening,
microcrack toughening, and deflection toughening. Consequently, the
next research frontier in the field of advanced monolithic ceramics
undoubtedly resides fn studies of the processing of optimum
microstructures (as identified by the mechanics descriptions). Some of

this research progress is summarized in the present report.

i) Toughness/Microstructure Interactions

fhe crack resistance phenomena studied during this period have
included transformation toughenfng; microcrack tcughaning and crack
deflection, as summarized in the paper by Evans and Evans and ?u. The
first two toughening mechanisms havs rsceived particular attention and
exprassions have bean developed that uniquely relate the toughnass to
the size of the procass zone. Joth processas induce toughness by
axhibiting non-linear, irreversible stress-strain hehavior, (which may

he regarded as psewds plasticity). The form of the strass-sirain law
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that pertains to transformation or microcracking is readily amenable to
crack growth analysis. Hence, more rapid progress has been achieved
with toughening mechanisms in ceramics than the corresponding processes
in metals. Furthermore, the importance of the irreversible nature of
the deformation (fig. 1) has emerged, because of the dominant influence
of the wake on the near tip opening displacement or, equivalently, the
residual energy density. The residual energy fn the wake also
manifests itself in the presence of R-curve effects (fig. 2)."

Transformation toughening has been analyzed by LMcMeeking and

Evans1 and by Budiansky, Hutchinson and Lambropolous.z These analyses
have revealed that the maximum toughness due to dilatation, for a fully

developed wake, has the form,

Ko = KM+ 0.25 EeTVf/F/('l-v) (1)

where Kc'“ is the toughness of the transformed product in the process
zone ahead of the crack, h is the transformation zone width, E s
Young's modulus, v 1is Poisson's ratio, V¢ 1s the volume fraction of
transformed product and e! 1is the transformation volume change.
Available comparisons with independent measurements of the
transformation zone width 1nd:lcate that most of the toughness can be
described by eqn (1), due to dilatation, coupled with deflectign
effects associated with K.™ (discussed below).

TSimitar R-curve effects in metals may also be wake related, but have

not yet been recognized as such.
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Some additional effects of shear are expected, but certainly do not
dominate the toughening. These comparisons reveal that the basic
character of transformation toughening is contained in the
micromechanics models, as expressed in terms of the zone width,

It remains to understand relations between the zone width and the
nucleation criteria for the transformation. This is a férmidable
undertaking, because cbservatons of the nuclei and of the progress of
the transformation cannot be made, due to the existance of a
substantial nucleation barrier. [t is deemed unlikely, therefore, that
significant progress in understanding the problem can be achieved,
within the next several years, beyond semi-quantitative descriptions of
size effects, based on stress concentrations at the corners of facetted
particles.3 The onus for optimizing transformation toughening thus
appears to reside in fabricating materfals with varying particle size,
shape and chemical composition and studying effects on the
transformation zone width etc.

Microcrack toughening has been ana]yzed,4 using the same

techniques developed for the transformation problem,!to give;

K, = KT + 0.25 Ef o/R (2)

where f. 1is the area fraction of material that microcracks at
saturation and ¢ 1s the dilatation induced by microcracking.
Generally o < el and since, fs < 1, microcrack toughaning is less
potent than transformation toughening. The dilatatiocn a is known to

be related to the thermal expansion strain due to expansion anisotropy
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or mismatch. However, it rema.n. to develop a fully quantitative
ralation between ¢ and the expansion properties of the material,
Additionally, further study is needed to define fs 1in single phase
polycrystals.”™ Such studies would be of merit, in order to model
important R-curve effects in rocks and refractories, and to further
understand microcrack toughening in various fwo phase ceramfcs (such as
Ml a04/2r05).

Contributions to the effect of grain size on microcrack toughening
have also been made by analyzing the conditions needed to sustain a
discrete microcrack zone ahead of a primary crack.s This analysis,
based on the scale and amplitude of the residual strain field
associated with thermal expansion anisotropy.-reveals that a microcrack
process zone can only be supported above a critical grain size. A
grain size dependent toughness of the type depicted in fig. 3 thus
ensues. The peak toughness coincides with the grain size at which
thermal cracking occurs, upon cooling, because the thermally induced
cracks do not contribute toughening (c.f. transformation toughening).
The toughening described by egqn (2) thus pertains in the intermediate
grain size range, wherein the toughness increases with increase in
grain size. Based on this research® and previous work,s grain size
effects on toughness and related specimen geometry effects® now seem to

be Adequately understood, for most purposes.

*in materials containing a second phase fe is related to the volume

fraction of the phase.



Introduction 5

Oef tection toughening is dictated exclusively by effects occurring
at the crack tip. Analysis suggests7 that the twisting of cracks
between deflecting phases in most potent in reducing the crack driving
force. Hence, rod-shaped deflecting phases yield the maximum
toughening (fig. 4). These predictions are in good accord with
observations on SiiNg, SiC and A1,03. Hence, further analysis of
deflection effects is not regarded as requiring a high priority.
However, the second phase characteristics needed to induce deflection,
such as residual strain, cleavage resistant planes etc., require
further study. Processing of materfals with rod-shaped deflecting
phases should also receive attention, especially since the toughening
mechanism is temperature independent and can be used to optimize high

temperature toughness.

i1) Machining Damage

Recent research has highlighted the assential similarities and
differences hetwaen machining damage and indentation cracks, thereby
establishing the final requirements for predicting machining damage
either form the machining load or from surface acoustic wave
measurements.8 The similarities pertain to the dominant influence of
the residual stress on both the depth of the damage and the effect of
the damage on the fracture stress. Furthermore, the dominant material
parameters (toughness, hardness and modulus) enter the final expression
for the failure stress, such that the failure strzss for a machined

specimen is given by:



