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Introduction.

The School on « Frontiers in Physical Acoustics » discussed some aspects of
recent research which have relevant importance in both acoustics and related
fields.

The topies treated were concerned mainly with nonlinear acoustics and the
subharmonic path to chaos, sound propagation in special conditions (in porous
materials, at rough surfaces and in space), acoustic engines, acoustic microscopy
and some recent developments in acoustic transduction.

D. G. CRIGHTON presented the basic theoretical treatment of sound propa-
gation, mainly in unbounded fluids with some reference to propagation in tubes,
when local or global effects of weak nonlinearity are present. The analysis
considers in detail the validity of the solutions of differential equations in
the various conditions of nondissipative, dispersive, dissipative media, and for
various types of waves. Particular effort was devoted to illustrate the Burgers’
differential equation, valid for the wave evaluation when weak nonlinear and
dissipative terms are comparable. This famous canonical equation is the only
nonlinear parabolic equation which has an exact linearization (Hopf-Cole trans-
formation) and an exact general solution for arbitrary initial data. The fact
that no other parabolic equation has these properties indicates clearly the
difficulties to be found in the solution of nonlinear acoustic problems.

The author considers, in detail, the solutions of the Burgers’ equation for
periodic plane waves and of the so-called generalized Burgers’ equation when
geometrical spreading effects are included so as to treat propagation along a
«ray tube» or horn. The particular difficulties found in the theoretical treat-
ment of propagation over long ranges, where various conditions may strongly
affect the evaluation, are also examined. The effect of the presence of other
processes are described, such as relaxation in the media, or the influence of
nonlinearity on beam diffraction (which is of great importance in the theory
of parametric array). The author indicated the position of the theoretical
problems which present research is facing.

The physical origins of noise were discussed by Prof. J. E. Frowcs WIL-
L1AMS. The problem of source definition in the aerodynamic context was
presented pointing out, at the start, the ambiguity intrinsically connected with
a determination of the source from a knowledge of the wave field. Various
source distributions (monopole, dipole, quadrupole, multipole) were considered.
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The multipole expansion, which indicates how point sources may duplicate
the radiation field of a different source distribution, is mainly useful for compact
sources smaller than the acoustic wave length. The cases of noncompact source
distribution, or of sources with variable compactness ratios were discussed.
The author then continued on to consider the situation where the sources are
moving. The treatment becomes much more difficult in comparison with the
case of the source at rest, even when the hypothesis of uniform motion can be
made. In such a case, it is possible to choose among different co-ordinate
systems for the computation of the radiated field. Such a possibility fails when
the motion is nonuniform. Important cases were treated for both situations.

Research conducted in the last few years has made evident that deterministic
systems can present erratic and seemingly irregular motion. This behaviour,
different from erratic motion generated by random external forces, is classified
as chaotic behaviour. Its appearance within a dynamical system requires,
as a prerequisite, the existence of nonlinearities in the equation of motion.
Most nonlinear systems exhibit, at certain critical values of a relevant parameter,
a transition from regular to chaotic behaviour, ¢.e. the regular orbits of the
system may pass to a practically unpredictable random process. Such a course
of behaviour has great importance in the understanding of turbulence (and
noise) in dissipative systems and in the thermodynamic behaviour of conserva-
tive systems.

The contribution of R. H. G. HELLEMAN, « Chaotie and turbulent behavior
of simple nonlinear systems », dealt with such an important subject. The author
introduced a general model, « period-doubbling transition to chaos», which is
able to describe the growth in complexity of mechanical orbits in nonlinear
systems when a characteristic parameter (energy, Reynolds number, ete.) is
increased. It predicts the existence of a finite critical value of such a parameter
beyond which the spectral (noise) intensity of the orbits increases so greatly
that unpredictable chaotic behaviour is established. The predictions of this
model, which allows random processes from deterministic equations of motion
to be obtained, have been experimentally tested in various fields. They have
been confirmed by numerical simulations for many other nonlinear systems in
which experiments have not as yet been performed.

In the present School the lectures of M. Giglio and W. Lauterborn discussed
some of the more relevant experimental indications. M. GIGLio dealt with
pioneering experiments on fluid dynamics instabilities, in particular the Ray-
leigh-Benard instability where the approach to chaos via period-doubling
bifurcation has been clearly demonstrated. He discussed also the experimental
data obtained in the chaotic region.

W. LAUTERBORN presented some brilliant experiments on the dynamics of
acoustic cavitation showing how the cavitation noise is of deterministic origin.
The results can be found from a simple theoretical model of acoustic turbulence
based on nonlinear resonances and bifurcation structures.
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Acoustic cavitation is a research field which has received increasing atten-
tion in recent years. The contribution of A. PROSPERETTI to the present School
was a thorough discussion of the subject. The various physical processes which
are involved in determining acoustic cavitation were discussed as well as the
theoretical models and the most recent experimentation results. Special atten-
tion was given to the basic process of forced oscillations of simple bubbles,
to their stability and to the aspects of their large-amplitude motion when suc-
cessive subharmonic bifurcations occur.

Another contribution to the study of the path to chaos of oscillating non-
linear systems was given by R. KeoLIAN and I. RUDNICK, who have studied
parametrically excited surface waves (gravity being the major restoring force)
in a one-dimensional trough containing liquid He (at 1.22 K). As the driving
force is increased, the surface wave becomes modulated at a frequency ap-
parently incommensurate with the driving frequency. The modulation itself
becomes successively modulated.

J. Wu, R. KeEoLiAN and I. RUDNICK reported another experiment in a
nonlinear system formed by a trough resonator partially filled with water.
A new type of nonpropagating solitary wave (soliton) can be established when
the resonator is parametrically driven in a direction normal to its length and
at an appropriate frequency and amplitude.

The study of the scattering of waves from rough surfaces is of great interest
in various fields of physies (acoustics, optics, geophysics) because it allows
problems of real practical interest to be considered. I. TOLSTOY considered the
subject of long-wavelength acoustical scatter from rough surfaces by developing
a smoothed boundary-condition technique. The theory, initially suggested by
Bior for hard surfaces, has been extended to rough two-fluid interfaces. It
demonstrates the existence of a boundary mode which originates by the trapping
of energy near the boundary through a process of multiple scattering between
the roughness elements. Such an existence and the properties of the mode
have been confirmed by model experiments with hard rough surfaces in air
in the (1--30) kHz band. Many applications can be foreseen in the entire fre-
quency range from infrasound to ultrasound. They may involve problems in
such fields as geophysics, geoacoustics, material science and processing devices.

Prof. H. N. V. TEMPERLEY considered the reflection of positive pressure pulses
at the free surface of water. Even under laboratory conditions, the free surface
of water is not a perfect reflector. The author’s analysis leads to the suggestion
that the reflecting surface has to be considered as molecularly rough and
«loaded ». The last effect could be explained by imagining that the reflection
actually occurs at a small distance from the geometrical surface from a mixture
of drops and vapour bubbles. Such an interpretation is capable of explaining
the discrepancies between results of static and dynamic determinations of the
tensile strength of water.

Recent developments in the acoustics of porous media were the subject
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of the lectures presented by D. L. JorNsON. The porous fluid-filled solid media
may be considered as a two-component system where each component forms its
own infinite cluster connected throughout the sample. Experimentally and theo-
retically, it can be shown that two distinet longitudinal modes exist in the long-
wavelength limit. A semi-phenomenologicaltheory has been given by BIoT where
the average motions of both solid and fluid parts are considered separately as in
two different,although interpenetrating, media. Such a relatively simple theory
makes use of a few phenomenological parameters which may be related to meas-
urable quantities. It is successful in accounting for the results of many experi-
ments such as the diffusive mode seen in gels, 4th sound in superfluid/superleak
systems, the diffusion of a fluid pressure pulse through a porous medium and
the «slow» compressional wave in water-saturated samples. The author also
presented theoretical considerations on the input parameters in order to show
the way in which the physical properties of porous, fluid-saturated solids de-
termine the propagation of sound in them. This allows the theory from micro-
scopic considerations, such as effective-medium theories and multiple-scattering
theory, to be discussed.

Various experiments to be performed inside space vehicles are presently
programmed to take advantage of almost zero gravity and of no need for
containers. The experiments are of interest for research in physies and material
science. T. G. WANG, a scientist involved in these experiments, reviewed the
recent progress in some of the space technologies and facilities with regard to
acoustics. A novel acoustic method has been developed for controlling liquid
samples without physical contact. It makes use of the static acoustic pressure
generated by three mutually orthogonal standing waves. The same apparatus
allows for the rotation of the sample if suitable phase differences between
drivers of the field in orthogonal directions are introduced. Acoustical methods
for inducing oscillation in a liquid drop and for levitating samples are described.
The nature of the physical acoustic research which should be allowed by these
technologies was briefly discussed.

The problem of determining in great detail the field radiated by a source,
a complex vibrator in general, is of great importance in order to correlate the
properties of the source (structure, mode of vibration, etc.) with those of the
radiated field (power, far-field pattern, vector intensity field, ete.). J. D.
MAYNARD presented the features of a newly developed experimental method,
the near-field acoustic holography system, which, by fully exploiting the
principles of holography, allows computer graphic displays to be obtained of
1) the sound pressure field and the particle velocity field from the source to
far field, 2) the modal structure of a vibrating surface, 3) the vector intensity
field, 4) the far-field radiation pattern and 5) the total power radiated.

The technique uses an open array of microphones on a two-dimensional
surface close to the source. This allows a large area to be covered and a large
solid angle from the source to be subtended. The technique involves a simple
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noncontact measurement and, therefore, requires only a short time for carrying
out the calculations. It lends itself to follow the time evolution of sound fields.

The subject of acoustic imaging has progressed largely in recent years due to
the work of the Stanford Group, led by C. F. QUATE, which has developed the
scanning acoustic microscope. This subject was presented and discussed at
the School by J. E. HEISERMAN and C. F. QUATE. The heart of the microscope
is a spherical lens created on the surface of a sapphire rod with a radius of the
order of 12 um which focuses in a liquid the sound emitted by a piezoelectric
source placed at the other end of the rod. The object to be examined is placed
in the focal plane, and it is mechanically moved in two directions, so that it is
periodically examined point by point by the sound beam. The apparatus can
be arranged as a reflection microsecope (using short pulses) or as a transmission
microscope (using continuous waves). Resolutions as high as 2000 A have
been achieved at room temperature by operating the microscope in a special
nonlinear mode at 4.2 GHz. Still higher resolutions can be achieved by using
liquid *He at a very low temperature. A microscope operating at 8 GHz and
0.1 K has reached a resolution of 200 A. According to theoretical and experi-
mental studies, the ultimate limit has not yet been reached.

The possible applications of the method in fields such as material science,
integrated-circuit technology, medicine and biology are enormous. They can
exceed the limits of the optical microscope, being the method capable of
observation in opaque media and of having the high resolutions quoted
above. Moreover, it has been possible to operate in a very wide frequency
range with wavelenghts exceeding the ratio 10000 to 1: from 3 MHz (in
water 1 = 500 um) to 8 GHz (in helium, A = 300 A).

A very promising new field of research concerns the study of the thermo-
acoustic effect and of some types of intrinsically irreversible engines, i.e. of
thermodynamic engines whose operation rests on the irreversible nature of the
processes: their efficiency would be zero if all processes involved were reversi-
ble. J. 0. WHEATLEY, who is conducting pioneering work in this advanced
field, presented a thorough discussion on the thermoacoustic effect. This effect
consists in the establishment of a temperature difference between the ends of
plates conveniently placed near the closed end of a tube where sound waves
(of wavelength much larger than the longitudinal length of the plates) are
present. Such a temperature difference, which may reach high values, is
caused by the pressure change in the gas due to the wave and to the intrinsically
irreversible process of heat exchange between the gas and the plates. The
thermodynamics of the effect is discussed as well as its possible application to
acoustic engines (heat-driven cooler, cryo-cooler and the thermoacoustic oscil-
lator). Demonstration experiments on the basic elements and the concepts and
caleulations for the engines were discussed.

The influence of nonlinearities in the processes and the development of
nonlinear acoustic elements for studying two-media-dependent phenomena are
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considered. To stress the very fundamental nature of the treatment, it is to be
noted that the intrinsieally irreversible engines, which are here studied in an
acoustic context, are not limited to this field (one can consider, for instance,
magnetic engines and plasma engines).

E. F. Carome’s contribution, « Acousto-optic transduction in optical fibers
and fiber optic acoustic devices», examined the applications of the low-loss
optical-fiber technology to the development of acoustic sensors and of acousto-
optics devices. The relevant properties of optical fibers and the general charac-
teristics of interferometric sensors were reviewed before discussing the acoustical-
ly induced phase transduction in fiber. The phase variation of the light, produced
by the propagation through a fiber length, is changed if an acoustic wave
impinges on the fiber as a consequence of the acoustic pressure on the length
itself and on the refractive index. Such an effect may lead to an acoustic detec-
tor when used in interferometric schemes. The acoustic sensitivity of a fiber
strongly depends upon the elastic properties of the fiber coating and on the
frequeney range (i.e. the ratio of sound wavelength to the linear dimensions
of the fiber section and of the device). Birefringence can also be induced in
special arrangements. Various devices have been produced, such as gradient
hydrophones, optical phase modulators and acousto-optical frequency shifters.
Many other are foreseen in the near future.

D. SETTE
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Basic Theoretical Nonlinear Acoustics.

D. G. CRIGHTON (")
Department of Applied Mathematical Studies, University of Leeds - Leeds LS2 9JT, England

1. - Introduction.

In these notes I want to give an introductory account of the basic theoretical
developments in nonlinear acoustics. I take a very limited view of the scope,
understanding acoustics to refer to the propagation of disturbances in the
linear regime (implying a limitation on the amplitude and the space-time
domain considered), at « moderate» frequencies, through bulk fluid media
of a fairly «normal» kind (in particular, through air and water in normal
conditions); and nonlinear acoustics to enlarge that scope by introducing the
local or global effects of weak nonlinearity in the governing equations. Non-
linear acoustics of solid media will be completely excluded, as will surface
wave phenomena, aspects requiring gquantum-mechanical explanation, and
interactions with opfical and electromagnetic waves. Effects of strong local
nonlinearity will not be considered (as in strong shock waves, blast waves,
detonations and deflagrations), nor will mention be made of all the work on
nonlinear acoustic propagation in tubes (dealing both with pure propagation,
including mean flow and possible transonie effects, and with reflexion at closed
or open ends and the establishment of resonant oscillations). In an introductory
course I see it as preferable to go carefully into the basic issues, rather than to
skate over such a wide field with diverse applications in science and engineering.
And when all the above exclusions are made, a corpus of material remains
that epitomises nonlinear acoustics and explains why there is an identifiable
scientific discipline called nonlinear acoustics (and why much was missed when
the subject was thought to be merely a trivial limit of gas dynamies).

I want to emphasize that, although much has been achieved in this field,
developments have not been possible at the rate which has been attained in
other fields of nonlinear wave theory in the last 20 years. Leaving aside prog-

(*) Present address: Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge CB3 9EW, England.
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