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PREFACE

This text, with its performance-based format, has been developed to provide the
essential elements of a technical mathematics sequence that includes calculus. It
provides a comprehensive coverage of algebraic expressions, linear equations
and inequalities, polynomial and transcendental functions, and the fundamental
concepts of differential and integral calculus. There is sufficient material for a
two semester sequence.

The subject material is related to specific skills needed by technologists.
Our colleagues in technical fields and several reviewers have been helpful in
suggesting topic areas for emphasis and in isolating skill deficiencies observed in
their students. Numerous applications have been incorporated along with the
related topic coverage. We have attempted to include only those mathematical
concepts for which we can demonstrate relevance in a technical program. Al-
though rigorous proofs have been avoided, we have attempted to provide mo-
tivation for various results by including intuitive discussions that lead to the
results. For example, a motivational approach is used to lead to the form
y — k = a(x — h)*for a quadratic function. We have also attempted to provide
some sense of direction through the text by the narratives in the chapter intro-
ductions and in the review sections. Each review section includes a glossary of
terms. One of our goals is that our students will not only be able to do mathe-
matics but talk about it as well.

For the benefit of students with weak math backgrounds, the text in-
cludes a review of elementary concepts from arithmetic and basic algebra. How-
ever, it is assumed that the math background of the students does include basic
algebra. This is the rationale for a somewhat cursory treatment of certain topics
such as real number operations. Instructors whose students are better prepared
may choose to bypass selected topics from the earlier chapters.

The use of calculators and computers is integrated throughout the text,
and an appendix on BASIC is included, although the text can be used without a
computer. We have included keystroke sequences for problem solutions on any
calculator that uses algebraic logic and have provided BASIC programs for
problem solutions by computer. We have used computer programs only where
they are definitely beneficial. The syntax used in the BASIC programs conforms
to minimum BASIC standards and should work on any computer. We have
avoided the use of graphics since they are different on every computer. The
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programs contain minimal documentation, but they are well structured. Our
purpose is to suggest that a student can use existing programs, modify those
programs, and even write programs that do useful things without formal in-
struction in programming.

In addition to the integration of calculators and computers, another
unique feature of the text is the emphasis on measurement and data handling.
Such material is often treated in basic physics or chemistry texts and receives little
reinforcement in mathematics classes. The material in the body of the text is
supplemented by two appendixes on working with real data and data analysis.

The text gives considerable emphasis to the treatment of linear systems
and to vectors, including some vector algebra. Separate chapters on each have
been included. This emphasis is in response to a trend toward more sophisticated
applications in engineering technology courses.

The text provides independent guidance for the student through numer-
ous worked examples, answers to odd-numbered exercises, performance objec-
tives inserted throughout the text, chapter practice tests keyed to the performance
objectives, and a review and glossary at the end of each chapter. Exercises are
paired so that for each odd-numbered exercise of a given type, there is a corre-
sponding even-numbered exercise. Answers to even-numbered exercises, prac-
tice tests answers, and two forms of tests for each chapter are available to
instructors.

We would like to acknowledge the assistance and suggestions provided
by the following individuals during the preparation of this manuscript: Professor
James C. Pleasant, East Tennessee State University, Johnson City; Professor
Grace L. DeVelbiss, Sinclair Community College, Dayton, Ohio; and Professor
Larry R. Lance, Columbu_s Technical Institute, Columbus, Ohio. Thanks also to
our editor at Breton Publishers, George J. Horesta, and to Sylvia Dovner and the
staff at Technical Texts, Inc., for their efforts in behalf of this project.
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WORKING WITH
NUMBERS

OUTLINE

INTRODUCTION

1.1 Review of the Real Number System
1.2 Numbers in Scientific Notation

1.3 Numbers Large and Small

1.4 Using the Calculator

1.5 Using the Computer

1.6 Reporting Numerical Results

1.7 Review and Glossary

In this chapter, we present a brief review of the real number system
along with some techniques for operating on numbers with calcu-
lators and computers. These techniques will be applied throughout
the text.

One of the products of technology is the low-cost computing
system. Electronic calculators, hand-held computers, and desktop
computers are in routine use by tcchnologists as well as by engineers.

While we can usually depend on a machine to compute rapidly
and accurately, we cannot expect it to verify the validity of the input
data nor to interpret the results. That the computation process is
invisible imposes added responsibility on human users of computing
machines. We must always ask the question “Does the result make
sense?” We must also understand the various forms in which the
machine accepts numerical input and delivers numerical output.




2 1 WORKING WITH NUMBERS

— REVIEW OF THE REAL
NUMBER SYSTEM

DEFINITION

DEFINITION

In this section, we review the various types of real numbers and the
rules for performing arithmetic operations on those numbers. The reason
for including this material is not to teach new concepts but to review basic
concepts that will be assumed to be part of the student’s background as
new concepts are introduced.

The numbers with which we count, that is, the numbers 1, 2, 3, 4,
and so forth, are called the natural numbers. We will denote the collection,
or set, of natural numbers by N. If we include the number 0 along with the
natural numbers, we get the set of whole numbers, which we will denote by
W. Since N and W contain infinitely many numbers, we can’t actually list
every number. So we list enough numbers to establish the pattern of the
numbers and put three dots (ellipses) to indicate that the pattern continues.

Classification of Numbers

The natural numbers are the counting numbers
1,2 3,...
The whole numbers are the counting numbers plus zero, that is,

0, 152;33, ...

The natural numbers are often called positive integers. For each
natural number or positive integer a, there exists another number, denoted
by —a and read as “negative a,” such that a + (—a) = 0. We call —a the
additive inverse of a or the opposite of a. For example, the additive inverse
or opposite of 3 is —3 (negative 3) since 3 + (—3) = 0. The set of negative
integers consists of the additive inverses of all the positive integers. The set
of negative integers includes ..., —4, —3, —2, —1.

Integers

The set of integers, denoted by I, is the combination of the set of
whole numbers and the set of negative integers, that is,

vy —2, —1,0, +1, +2;°...
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1.1 REVIEW OF THE REAL NUMBER SYSTEM 3

The rational numbers can be defined in two different forms—
fraction form and decimal form.

Fraction Form of a Rational Number

A rational number i1s a number that can be written in the form

a

b

where a and b are integers and b # 0.

Note: The symbol # means “is not equal to.”

The set of rational numbers is denoted by (. Some examples of
rational numbers in fraction form are

2

1
305 4

[

|

I
N

Note that the negative fractions were written with the minus sign in front of
the fraction. The fractions could also have been written with the minus sign
in the numerator (the top half of the fraction) or in the denominator (the
bottom half of the fraction), that is,

We see that an integer is also a rational number since any integer
can be written as itself divided by 1. For example,
2 -5 0
2 == —_—) = = —
1 5 1 0 1

So 2, —5, and 0 are rational numbers.

Decimal Form of a Rational Number

A rational number is a number that can be written as a decimal that
either terminates or repeats.
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A terminating decimal is one that has only a finite number of
nonzero decimal places. For example, 0.125, —0.5, 226.29, —17.4256, and
8.333 are terminating decimals. A repeating decimal is one that continues
indefinitely but that eventually begins to repeat the same digit or block of
digits over and over without end. Examples of repeating decimals are
0.666 ..., 2.08333 ..., —0.8989 ..., and —5.4123123 ... . The dots in these
numbers indicate that the repeating digit or block of digits continues to
repeat indefinitely.

Rational numbers have a unique property. For each rational
number a, except 0, there exists a rational number

1 1
- such that ax-—-=1.
a a

We call '/, the multiplicative inverse of a or the reciprocal of a. For example,

'/, is the multiplicative inverse of 2
— %, is the multiplicative inverse of — ¥,
—5 is the multiplicative inverse of — Y
Yo.25 = 4 is the multiplicative inverse of 0.25

There does exist yet another set of numbers called the irrational
numbers. These numbers are distinct from the rational numbers. When the
irrational numbers are combined with the rational numbers, a bigger collec-
tion of numbers called the set of real numbers is obtained. The set of real
numbers is denoted by R.

But what type of numbers are the irrational numbers? Since an
irrational number is not rational, it cannot be written in the form

a
b

where a and b are integers. Likewise, it cannot be written as a terminating
or a repeating decimal. If we were to attempt to write an irrational number
in decimal form, the decimal expansion would continue forever and never
begin to repeat the same block of digits. Some specific examples of irratio-
nal numbers are # (pi), \/5 (the square root of 2), — \/5 (the negative square
root of 3), and /6. (Not all square roots are examples of irrational
numbers.)

Numbers that are not real also exist. They are called imaginary
numbers and complex numbers. Combinations of real numbers and imagin-
ary numbers form the set of complex numbers, which we will consider later.
For now, we will be concerned with the set of real numbers,

Figure 1.1 shows the relationship between the various types of real
numbers that we have considered.

HEEIRIRNEY o




1.1 REVIEW OF THE REAL NUMBER SYSTEM 5

Real numbers

2

Rational

Integers

Whole

Figure 1.1

You should now be able to recognize the various types of real numbers.

Check Classify each of the following real numbers into the smallest
group to which it belongs.

—3§J§21.730

Answer Integer, rational number, irrational number, natural
number, rational number, and whole number

We use a number line to represent the real numbers graphically. A
number line is constructed according to the following rule.

RULE Constructing a Number Line

Step 1. Draw a straight line, usually in a horizontal or a vertical direction.

Step 2. Select an arbitrary point on the line, call this point the origin of the
number line, and assign it the number 0.

Step 3. Decide on the length of one unit on the number line and the
positive direction on the line.

Step 4. Assign the number 1 to the point located one unit in length from
the origin in the positive direction. Likewise, the number 2 is
assigned to the point located two units in length from the origin in
the positive direction.

Step 5. Continue in this manner, assigning whole numbers to points on the
number line.

Figure 1.2 shows examples of number lines that exhibit the set of
whole numbers. As the illustrations in this figure show, horizontal number




