LUKE ALPHEY DNA Sequencing

FROM EXPERIMENTAL METHODS TO BIOINFORMATICS

Springer

2

Abbreviations

BLAST BSA CASP CCD	Basic Local Alignment Search Tool bovine serum albumin critical assessment of structure prediction charge-coupled device
cDNA	complementary DNA
DDBJ	DNA Databank of Japan
DDGE	double-strand denaturing gel electrophoresis
ddNTP	2', 3'-dideoxynucleotide
DMSO	dimethylsulfoxide
DNA	deoxyribonucleic acid
DTT	dithiothreitol
EBI	European Bioinformatics Institute
EDTA	ethylenediamine tetraacetic acid
\mathbf{EMBL}	European Molecular Biology Laboratory
\mathbf{EPD}	Eukaryotic Promoter Database
EST	expressed sequence tag
ExoIII	exonuclease III
ftp	file transfer protocol
GCG	Genetics Computing Group
HPLC	high-performance liquid chromatography
HSSP	homology-derived structures of proteins
IUB	International Union of Biochemistry
IUPAC	International Union of Pure and Applied Chemistry
MCS	multiple cloning site
5-MeC	5-methylcytosine
mRNA	messenger RNA
NCBI	National Center for Biotechnology Information
NMR	nuclear magnetic resonance
NP-40	Nonidet P-40
OMIM	Online Mendelian Inheritance in Man
ORF	open reading frame
PC	personal computer
PCR PDB	polymerase chain reaction
PDB PEG	protein databank
PLG PNK	polyethyleneglycol
REBASE	poynucleotide kinase
RFLP	Restriction Enzyme Database
RNA	restriction fragment length polymorphism ribonucleic acid
RT-PCR	
SCOP	reverse transcriptase–polymerase chain reaction structural classification of proteins
SRS	Sequence Retrieval System
~ • • • •	Sequence neurieval system

xii DNA SEQUENCING

SSCP STS	single-strand conformation polymorphism sequence tagged site
TBE	Tris-borate-EDTA
TE	Tris-EDTA
TEMED	N,N,N',N'-tetramethylethylenediamine
TES	2-[Tris(hydroxymethyl)methylamino]-1-ethanesulfonic acid
TREMBL TTE	Translated EMBL Tris-taurine-EDTA

Preface

In the 20 years since the current methods were first introduced, DNA sequencing has been at the heart of modern molecular biology. The sequence databases have been growing at an exponential rate, and even that rate of increase is improving, with doubling time down from about 22 months to 9 months. Whole new areas of research have been opened up by this technology, from molecular genetics to molecular taxonomy. With the advent of whole genome sequencing, exciting new vistas are emerging.

This book is intended as a practical guide, particularly at the strategic level. It aims to explain the options available and their relative merits, to allow the reader to decide which is most suitable for their application. The book covers the whole process of DNA sequencing, from planning the approach, through data acquisition, to extracting useful biological information from the data.

The book is aimed primarily at those new to DNA sequencing, but I hope that it will also prove a useful text for more experienced sequencers and that the information provided will be useful as a source of further information on familiar techniques and as a reference for less common ones. Part 1 describes the basic methods in detail, including manual and automated sequencing and the various pitfalls that may be encountered on the way. The equipment required is discussed, together with the advantages and disadvantages of each option.

Part 2 details the major applications of DNA sequencing: confirmatory sequencing to check a particular construct or mutant; sequencing PCR products; and strategies for sequencing large fragments of uncharacterized DNA. Part 3 covers Bioinformatics – the analysis of the sequence data to extract useful information. This section was contributed by Dr Andy Brass, Senior Lecturer in Bioinformatics at the University of Manchester, UK. It covers sequence analysis from checking and compiling the raw data through to homology searches and structural predictions.

Luke Alphey

Acknowledgements

First of all, I would like to thank Andy Brass for contributing the Bioinformatics section of the book. Jane Hewitt provided most of the gel examples for *Table 8.1* and Lawrence Hall provided the data for *Figure 7.2*. Eaton Publishing (*Figure 7.4*), VCH Verlagsgesellschaft mbH (*Figure 7.6*) and PE-Applied Biosystems (*Figures 10.3–10.6* and *10.8*) all generously permitted the reproduction of their copyright material. I am also grateful to Jane Hewitt, Lawrence Hall and Nina Nicholls for their critical reading of the manuscript. Finally, I would like to thank N.N. and B.B. for their constant encouragement and support.

Safety

Certain reagents indicated for use in this book are chemically hazardous or radioactive. The researcher is cautioned to exercise care with these reagents and with the equipment (e.g. electrophoresis equipment) used in these procedures, strictly following the manufacturer's safety recommendations. Disposal of waste (including waste chemicals and radioactive materials), must comply with all local, national and other applicable regulations. These procedures may also be governed by other relevant regulations, for example those covering the containment and use of genetically modified microorganisms. While every care has been taken to ensure that the experimental details discussed in this book are accurate and safe, the author accepts no liability for any loss or injury howsoever caused.

Many of the procedures discussed in this book are protected by patents or other legal protection. The reader is hereby notified that the purchase of this book does not convey any license or authorization to practise any of these procedures.

Contents

	Abbreviations Preface	
PA	RT 1: BASIC PRINCIPLES AND METHODS	
1.	What is DNA Sequencing?	1
	An introduction	1
	Nucleic acid structure	2
	DNA sequencing	5
	References	9
2.	Chemical Degradation (Maxam and Gilbert) Method	11
	A description of the method	11
	References	13
3.	Chain Termination (Sanger Dideoxy) Method	15
	Introduction	15
	Cycle sequencing	19
	References	25
4.	Instrumentation and Reagents	27
	Getting started – sequencing kits	27
	Oligonucleotide primers	28
	Primer design	29
	Primer design for cycle sequencing	31
	DNA polymerase	31
	Label dNTPs and ddNTPs	32
	dITP and 7-deaza-dGTP	35
	Pyrophosphatase	$\frac{37}{38}$
	References	39
5.	Template Preparation	41
	Introduction	41
	Preparing single-stranded DNA templates	41
	-	

Preparing double-stranded DNA templates (plasmids)	46
PCR products	46
Single-stranded DNA templates from PCR products	47
Large templates (lambda, cosmids, P1)	49
Templates for semi-automated sequencing	50
References	50

53

63

6. Gel Electrophoresis

Introduction	53
Overview	
Reading a sequence autoradiogram	53
	54
Gel systems	55
Safety	55
Gel plates	55
Combs	55
Width	56
Thickness	56
Length	56
Temperature control	56
Reagents	57
$\operatorname{Long} \operatorname{Ranger}^{\mathrm{TM}}$	57
Glycerol-tolerant gels	
	60
Formamide gels	60
Capillary electrophoresis	60
References	61

7. Nonradioactive Methods

Introduction	63
Semi-automated sequencers	64
ABI 377	
Dye terminator chemistry	65 68
Dye primer chemistry	70
Optimizing sequencing on the ABI 377	70
Template quality	72
Primer quality	73
Template and primer concentrations	74
Removing unincorporated label	74
Future developments	75
Brighter dyes	75
Better electrophoretic resolution	76
Better software	76
Uniform peak heights	76
Increased throughput	76

	LI-COR	77
	References	78
8.	Troubleshooting	81
	Introduction	81
	Co-termination	84
	Secondary structure	84
	Dirty template	85
	Sequencing near to the primer	85
	Incorrect dNTP incorporation	85
	Reaction conditions	86
	dITP	86
	Compressions	86
	Base analogs	87
	Formamide gels	88
	Reference	88

PART 2: APPLICATIONS

9.	Confirmatory Sequencing	89
	Introduction	89
	Checking constructs	89
	Sequencing allelic variants	90
	Alternatives to DNA sequencing	91
	Using restriction endonucleases	91
	Using oligonucleotide hybridization	92
	Using PCR	93
	References	96
10.	Sequencing PCR Products	97

10. Sequencing PCR Products

-

Introduction	97
Sequence information from PCR products	99
Sequence analysis of PCR products	99
Fidelity of other polymerases	100
Mutant detection by sequencing PCR products	101
Tailed primers	103
Custom dye primers	103
Dye terminators	105
Confirming the presence of heterozygotes	107
Sequencing methylated DNA	108
References	110

11.	Strategies for New Sequence Determination	111
	Introduction	111
	Directed versus nondirected strategies	112
	Primer walking	113
	Restriction endonuclease digestion and subcloning	114
	'Shotgun' methods	116
	Frequently cutting restriction endonucleases	117
	Sonication	117
	DNase I digestion	117
	Transposon-facilitated sequencing	117
	Deletion series	118
	Exonuclease digests too fast or too slow	120
	DNA is completely degraded by exonuclease	121
	Difficulty in cloning deletion products	121
	Deletions using γδ transposon	122
	References	123

PART 3: SEQUENCE ANALYSIS

12.	Introduction to Bioinformatics and the Internet – A. Brass	125
	Introduction	125
	Bioinformatics is a knowledge-based theoretical discipline	125
	Access to bioinformatics tools	126
	Getting access to tools on the Web	126
	Navigating the Web – or how do I find what I want?	127
	Using Web-based tools	129
	E-mail servers	130
	Accessing remote computers to get useful software –	
	anonymous ftp	130
	Good and bad practice	132
13.	Sequence Databases – A. Brass	133
	Background	133

Background	133
Primary databases	134
DNA databases	134
Genome databases	135
Protein sequence databases	135
Protein structure databases	137
Primary sequence database annotation	138
Information retrieval systems	141
Submitting a sequence to a database	

14.	Sequence Alignment and Database Searches – A. Brass				
	Introduction	145			
	Scoring matrices	145			
	Gap penalties	147			
	Pairwise sequence alignments	148			
	Multiple sequence alignments	149			
	Comparing sequences against a database	150			
	When is a hit significant?	156			
	References	156			
15.	Sequencing Projects and Contig Analysis –				
	A. Brass	159			
	Introduction	159			
	Analyzing clones	159			
	Removing the sequence vector	160			
	Removing other cloning sequence artifacts	160			
	Contig assembly	161			
	Predicting protein-coding regions	162			
	Coding regions in cDNA	162			
	Coding regions in genomic DNA	163			
	DNA analysis	164			
	Restriction enzyme maps	164			
	Promoters and other DNA control sites	165			
	RNA secondary structure prediction	166			
	References	166			
l 6.	Protein Function Prediction – A. Brass	167			
	Introduction	167			
	Comparing a protein sequence against a sequence				
	database to determine function	167			
	Hydrophobicity, transmembrane helices,				
	leader sequences and sorting	170			
	Calculating hydrophobicity profiles	170			
	Predicting transmembrane helices	170			
	Leader sequences and protein localization	172			
	Coiled-coils	172			
	Comparing a protein sequence against motif				
	and profile databases to determine function	173			
	Motif databases – PROSITE	174			
	Profile databases	175			
	References	176			

17.	Protein Structure Prediction – A. Brass	179
	Introduction	179
	Protein structure resources	181
	Secondary structure prediction	182
	Tertiary structure prediction	183
	Comparison against sequences of known structure	183
	Homology modeling	184
	Threading algorithms and fold recognition	184
	Critical assessment of structure prediction (CASP)	186
	References	187
	Appendices	189
	Appendix A: Glossary	189
	Appendix B: Amino acid and nucleotide codes	195
	Appendix C: Suppliers	197
	Index	203

1 What is DNA Sequencing?

1.1 An introduction

DNA sequencing is the determination of all or part of the nucleotide sequence of a specific deoxyribonucleic acid (DNA) molecule. The ability to sequence DNA lies at the heart of the molecular biology revolution. Techniques to sequence DNA were developed only quite recently; the original papers describing the modern methods were published in 1977 [1, 2]. The rate at which new sequence information is determined has increased rapidly over the last 20 years. It is still accelerating, to the extent that the entire human genome sequence of approximately 3×10^9 base pairs will be determined within the next few years, as will the genome sequences of a considerable number of other organisms of medical, agricultural or scientific importance.

The fundamental reasons for wishing to know the sequence of a DNA molecule are:

- to make predictions about its function;
- to facilitate manipulation of the molecule.

The aim of this book is to show how DNA sequence information is obtained and analyzed, and some of the major reasons for doing so. Chapters 2–8 describe the sequencing methods in common usage, with particular emphasis on the relative merits and pitfalls of each approach. Chapters 9–11 describe the major applications of these methods. Subsequent chapters cover the computer-based analysis of sequence data.

Before discussing the principles behind DNA sequencing, we must first consider the structure of a DNA molecule.

1.2 Nucleic acid structure

The normal conformation of DNA is as a double helix (see Figure 1.1). This helix comprises two DNA strands running antiparallel to each other, each strand being a chain of bases, each base covalently linked to the next. The bases are each attached to deoxyribose, a sugar molecule, and each sugar molecule is linked to the adjacent sugar molecule via a phosphate group. The basic repeat unit of DNA therefore comprises a base, a sugar and a phosphate group, and is known as a nucleotide (see Figures 1.2-1.5).

The structure of a four-nucleotide segment of DNA is shown in Figure 1.6. Note that only one strand is shown. Note also the numbering of the carbon atoms in the deoxyribose (sugar) part of the molecule. These each have a 'prime', for example 5' and 3', to distinguish them from the atoms of the bases. It is the 5' and 3' carbons of adjacent sugars that are linked via the phosphate groups, so each covalently linked DNA strand will have a 5' end and a 3' end, as shown in

FIGURE 1.1: The DNA double helix. Reproduced from Williams et al. (1993) Genetic Engineering, BIOS Scientific Publishers Ltd.

i<u>s</u>

FIGURE 1.2: Components of a DNA helix. A single strand of nucleic acid has a sugar-phosphate backbone to which the bases are attached. These linkages are all covalent. The other strand runs antiparallel. The two strands are held together by hydrogen bonds formed between complementary bases.

FIGURE 1.3: Sugar structures of rNTPs and ddNTPs. The sugar-phosphate backbone of RNA contains the 5-carbon sugar ribose, whereas that of DNA contains 2' -deoxyribose. ddNTPs which are used in DNA sequencing by the chain termination method (Chapter 3) contain the synthetic analog 2', 3'-dideoxyribose. The standard numbering system for the carbon atoms is shown for a generic 5-carbon sugar (pentose). Carbon atoms in the sugar part of nucleotides are designated 1', 2', etc. to distinguish them from the atoms in the base.

FIGURE 1.4: The structure of the bases found in DNA. Thymine and cytosine are pyrimidines, adenine and guanine are purines. The numbering system for the ring atoms is shown. Pyrimidines are linked to the sugar at N_{1} , purines at N_{e} .

Figure 1.6. In a linear double-stranded molecule, the 5' end of one strand is complementary to the 3' end of the other strand.

The two strands of the double helix are held together noncovalently by hydrogen bonds. The hydrogen bonds form between the complementary bases: adenine (A) pairs with thymine (T) and guanine (G) with cytosine (C) (see *Figure 1.7*).

Vucleo	o <u>s</u> ide =	base + sugar	Nucleotide	= base + sugar + phosphate
	base	nucleoside	ATP	adenosine triphosphate
A	adenine	adenosine	dATP	deoxyadenosine triphosphate
С	cytosine	cytidine	ddATP	dideoxyadenosine triphosphate
G	guanine	guanosine	dGTP	deoxyguanosine triphosphate
Т	thymine	thymidine	dNTP	deoxynucleoside triphosphate
U	uracil	uridine	ddNTP	dideoxynucleoside triphosphate

FIGURE 1.5: Nomenclature of nucleic acid precursors. The abbreviations *A*, *C*, *G*, *T*, etc. are usually clearer than the full names. dNTP and ddNTP can contain any base and are often used to refer to an equimolar mix of all four (di)deoxynucleoside triphosphates.

FIGURE 1.6: A single-stranded DNA molecule four nucleotides in length. Reproduced from Newton and Graham (1994) PCR, BIOS Scientific Publishers Ltd.

The related nucleic acid RNA (ribonucleic acid) differs from DNA in that the sugar in the sugar-phosphate backbone is ribose, rather than deoxyribose (see *Figure 1.3*), and uracil (U) is used in place of T.

1.3 DNA sequencing

Methods for sequencing RNA were developed earlier than for DNA, but now RNA is rarely sequenced directly. Instead, a complementary

FIGURE 1.7: Base pairing in DNA. Adenine (A) pairs with its complementary base thymine (T) and guanine (G) with cytosine (C). In RNA, uracil (U), replaces thymine. Note that the separation between the glycosidic bonds and the sugars are exactly the same (10.85 Å) for each base pair.

DNA (cDNA) copy is synthesized. This cDNA is then sequenced, and the sequence of the original RNA deduced from this.

DNA sequencing is the determination of the base sequence of all or part of a DNA molecule. In the case of the molecule shown in *Figure* 1.6, DNA sequencing would advance our knowledge from 'a DNA fragment about four bases long' to 'a DNA fragment whose sequence is ACGT' (see *Figure 1.8*). Of course most, DNA molecules of biological interest are considerably longer than this!

The informational content of DNA is encoded in the order of the bases (A, C, G and T) in much the same way as binary information is stored in a computer as a string of 1s and 0s (*Figure 1.9*). The purpose of DNA sequencing is to determine the order (sequence) of these bases in a given DNA molecule. However, knowing the DNA sequence of a gene does not necessarily tell us what that gene does, any more than knowing the binary code of a computer program will necessarily tell