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PREFACE

INTRODUCTION

Power electronics is one of the broadest growth areas in electrical technology. Today, elec-
tronic energy processing circuits are needed for every computer system, every digital prod-
uct, industrial systems of all types, automobiles, home appliances, lamps and lighting equip-
ment, motor controllers, and just about every possible application of electricity. At one time,
the growth was pushed by energy conservation goals. Today, there are many more benefits
in terms of reliable, lightweight power processors. A host of new applications is made pos-
sible by improvements in semiconductors and by better understanding of power electronics.
Motors with integrated electronic controls will soon be the norm. Portable telephones and
communication devices demand tightly optimized power management. Advanced micro-
processors need special techniques to supply their power. Utilities worry about the quality
of their product, and about how to use electronics for more effective power delivery.

This text presents modern power electronics in its many facets. But it is not a loose
collection of information. Rather, the intent is to lay down a firm conceptual base from which
engineers can examine the field and practice its unusual and challenging design problems.
What makes the treatment different? First, a sound scientific framework is established, then
students are encouraged to observe how the many converter types and methods branch out
naturally from this framework. Second, the treatment is structured for aspiring student engi-
neers. It is written to help students synthesize their electrical engineering study, as they fin-
ish an education and begin a career or advanced study. Third, it covers a great deal of sup-
port material, such as models for passive components and basic design strategies for
magnetics, that is rarely taught but is ubiquitous for the practicing designer.

With a few important exceptions, past treatments of power electronics begin with de-
vices, then develop specific application circuits case by case. In such a broad field, students
with little experience are hard pressed to find the deep commonality. A few hours of Web
browsing confirms how much misinformation exists about power electronics and design of
conversion circuits. Modern devices have reached the point at which they no longer limit the
applications. Imaginative designers have found a huge variety of solutions to many types of
power electronics problems. It is essential to develop a system-level understanding of the
needs and techniques, since a device focus can be unnecessarily constraining. Even so, books
continue to be published following the practice of past treatments. Notable exceptions in-
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clude the 1981 book by Peter Wood, Switching Power Converters (Van Nostrand), where a
switching function approach was introduced as the first unifying framework for power elec-
tronics. More recently, the text by Kassakian, Schlecht, and Verghese, Principles of Power
Electronics (Addison-Wesley, 1991), builds on Wood’s framework with many extensions.
Unfortunately, these two books tend to be best suited for students pursuing advanced de-
grees. This new book owes its roots to the Wood text, and shares the philosophy of the Kas-
sakian text. However, from the outset it was planned for undergraduate students or other en-
gineers with no prior power electronics background.

Why study power electronics? First, because it is fun. Power electronic circuits and
systems are the basic energy blocks needed for things that move, light up, cook a meal, fire
a combustion cylinder, or display information on a video monitor. Second, because it makes
use of all a student’s knowledge of electrical engineering, and aims at a new level of un-
derstanding. To most students, circuit laws are lifeless mathematical equations. To the power
electronics engineer, Kirchoff’s laws are the beacon that guides a design—and the snare that
catches the unwary or careless. A power electronics engineer needs a working understand-
ing of circuits, semiconductor devices, digital and analog design techniques, electromagnet-
ics as it affects layout and device action, power systems and machines, and the inner action
of major applications. Third, because of the challenge. Since power processing is needed just
about everywhere, there are few areas with more variety of design tasks. A power electron-
ics expert might work on a 10 MW backup system one day, and on a 1 W system for bat-
tery processing the next. Fourth, because of the opportunity. The next personal computer you
buy will have a power supply as big as the rest of its electronics combined. It will place ex-
treme performance demands on the supply, and will require total reliability. The power sup-
ply will be a significant fraction of the cost to build the computer. Yet the computer manu-
facturer employs dozens of hardware-software engineers for every power electronics
engineer. The need is there, and will grow.

ORGANIZATION AND USE

The book is organized into five parts. Four are here in your hands. Part V, the laboratory
supplement, is available through a World Wide Web site. In Part I, the framework for power
electronics is established. The three chapters in Part I offer a historical perspective, and es-
tablish key framework concepts such as switching functions, equivalent methods for filter
design, diode circuit analysis, and regulation. Part II covers all the major converter classes—
dc—dc, ac—dc, dc—ac, ac—ac, and resonant converters—in considerable depth. Students are of-
ten surprised to learn that they can become effective designers of useful converters by the
time they are through Chapter 4. Chapter 8 presents perhaps the first undergraduate text ma-
terial on the emerging subject of resonant converters. Part III covers the issues of compo-
nents, from models for sources and loads to power semiconductors to the circuits that drive
them. Unique features include the fundamental approach to magnetics design, coverage of
wire sizing and parasitic resistance effects, and extensive examples. Part IV introduces con-
trol methods, again at the undergraduate level. Chapters 15 and 16 discuss general control
issues and develop the popular frequency domain design approach. Chapter 17 provides a
new perspective on an especially simple approach to large-signal control.

The book is big because of the breadth of the field. The general layout supports a first
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course at the senior level, based on Part I and Part II. A second course would cover Part ITI
and Part IV. At the University of Illinois, there is just one course at present. We attempt to
cover Chapters 1-6, 11, and 12 in detail, with briefer treatments of 7-10 and 13-14. The
chapters are relatively independent, so a variety of course arrangements can be supported.
As prerequisites, students should recognize that all their basic course work in electrical en-
gineering will be brought to bear for the study of power electronics. Prior courses in circuits,
in electronics, in systems, and in electromagnetics are essential. Prior courses in electro-
mechanics, analog or digital circuit and filter design, and power systems can be helpful, but
are not vital.

A few things are not here. Space and time do not permit detailed coverage of individ-
ual applications. Motor control and telecommunications power are two examples. It is not
possible to provide adequate coverage for dc or ac motor control, or for telecommunications
power system design. Beyond the introduction in Chapter 6, the motor control application is
left to books from others. The telecommunications application is left to a number of dc—dc
converter examples.

The book makes extensive use of computer tools, and students are encouraged to fol-
low this lead. However, no floppy disk is included because few readers find time to learn
the programs on such disks. Instead, several example listings are given in the Appendix.
Also, students may visit the Web site http://power.ece.uiuc.edu/krein_text to find copies of
programs for downloading and to obtain updates to programs or to course materials. A group
of industry-based students developed extensive Mathcad® applications. Some of these can
be found on the site. Additional problems will be posted as well. Instructors can request Web
access to problem solutions through the publisher.

A few words on chapter problems: In this book, a great many of the problems have a
design orientation. This means the problems are open-ended, and not always completely spec-
ified. Students are encouraged to think about the context of a problem, and fill in informa-
tion when necessary. There are no tricks here. In general, each problem attempts to describe
a real system.

UNITS, STANDARDS, AND SIGNIFICANT DIGITS

In general, the International System (SI) of Units is used throughout the text, consistent with
IEEE standards. There are some exceptions in magnetics and capacitive components, in which
the centimeter is common as the unit of length. If units are not listed explicitly, ST units
should be assumed. Appendix B provides a review of some of the unit issues. When possi-
ble, graphics symbols are taken from [EEE Standard 315-1975 (reaffirmed, 1993). The stan-
dard gives procedures for creating combination symbols. Unusual symbols, such as that for
an ideal ac current source, attempt to follow the procedures.

There are dozens of numerical examples and hundreds of numerical problems in this
text. It is important to be aware of significant digit issues. A real circuit application com-
monly has only about two significant digits. Tolerances on capacitors, inductors, and timing
elements are wide. However, in power electronics we are often interested in small differ-
ences for efficiency measurements or other detailed information. It is important that small
differences not be lost to round-off error in repeated calculations. In examples here, digits
are carried through, and round-off is performed only as the last step in the computation.
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Meaning

Phase delay angle

Turn-off angle

Difference angle, for relative phase control
Electric permittivity

Efficiency, Pyu/Pin

Flux linkage, Wb-turns

Magnetic permeability

Time constant ratio, /T

Resistivity

Electrical conductivity; Stefan-Boltzman constant
Time constant, [/R or RC

Flux; phase angle

Radian frequency; radian shaft rotational speed
Permeance

Reluctance

Area

Magnetic flux density
Capacitance

Duty ratio

Electric field

Force

Open-loop transfer function
Magnetic field intensity; feedback transfer function
Current

Current density

Closed-loop transfer function
Inductance

Modulating function
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Number of turns
Power

Reactive power; quality factor
Resistance
Apparent power
Period; temperature
Voltage

Work; energy
Reactance
Admittance
Impedance

N<>xs<—H»xQvTz

Turns ratio

Fourier sine coefficient
Constant (in general)
Time-varying duty ratio
Control error
Frequency

Gap length

Heat transfer coefficient
Time-varying current
V-1

Modulation index; gain
Length

Integer index

Integer index

Integer index; instantaneous power
Switching function
Laplace operator

Time

System input; Heaviside’s step function
Time-varying voltage
State variable

Output variable
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