DISCRETE-TIME
SIGNAL
PROCESSING

Second Edltlon ,

Alan V. Oppenheim ¢ Ronald W. Schafer

with John R. Buck

PRENTICE HALL SIGNAL PROCESSING SERIES ~ ALAN V. OPPENHEIM, SERIES EDITOR




SECOND EDITION

Di1SCRETE-TIME
SIGNAL
PROCESSING

ALAN V. OPPENHEIM

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

RoNALD W. SCHAFER

GEORGIA INSTITUTE OF TECHNOLOGY

WITH

Joan R. Buck
UNIVERSITY OF MassAcnUSETTS DARTMOUTH

PRENTICE HALL
UrpPER SADDLE R1VER, NEW JERSEY 07453



Oppenheim. Alan V.

Discrete-time signal processing / Alan V. Oppenheim. Ronald W.

Schafer, with John R, Buck. — 2nd cd.
. cm.

Includes bibliographical references and index.

ISBN 0-13-754920-2

1. Signal processing—Mathematics. 2. Discrete-time systems.
[. Schafer. Ronald W. II. Buck. John R. III. Title.
TK5102.9.067 1998
621.382"2—dc21 98-50398

Clp

Acquisitions c¢ditor: Tom Robbins

Production service: Interactive Composition Corporation
Editorial/production supervision: Sharyn Vitrano

Copy editor: Brian Baker

Cover design: Vivian Berman

Art director: Amy Rasen

Managing editor: Eileen Clark

Editor-in-Chief: Marcia Horton

Director of production and manufacturing: David W, Riccardi
Manufacturing buyer: Pat Brown

Editorial assistant: Dan De Pasquale

© 1999, 1989 Alan V. Oppenheim. Ronald W. Schafer
Published by Prentice-Hall, Inc.
Upper Saddle River, New Jersey 07438

All rights reserved. No part of this book may be
reproduced. in any form or by any means,
without permission in writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include
the development, research, and testing of the theories and programs to determine their effectivencss. The
author and publisher make no warranty of any kind. expressed or implied, with regard to these programs
or the documentation contained in this book. The author and publisher shall not be liable in any event for
incidental or consequential damages in connection with. or arising out of, the furnishing, performance, or use
of these programs.

Printed in the United States of America
109 8 7 6 5 4 3 2

ISBN  0-13-T54920-2

Prentice-Hall International (UK) Limited. London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc.. Toronto

Prentice-Hall Hispanoamericana. S.A.. Mexico
Prentice-Hall of India Private Limited. New Delhi
Prentice-Hall of Japan, Inc., Tokyvo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro



PREFACE

This text is a second generation descendent of our text. Digiral Signal Processing, which
was published in 1975. At that time, the lechnical field of digital signal processing was
in its infancy, but certain basic principles had emerged and could be organized into
a coherent presentation. Although courses existed at a few schools. they were almost
cxclusively at the graduate level. The onginal text was designed for such courses.

By 1985, the pace of rescarch and integrated circuit technology made it clear
that digital signal processing would realize the potential that had been evident in the
1970s. The burgeoning importance of DSP clearly justified arevision and updating of the
original text. However, in organizing that revision, it was clear that so many changes had
occurred that it was most appropriate to develop anew textbook. strongly based on our
onginal text, while keeping the original text in print. We titled the new book Discrete-
Time Signal Processing to emphasize that most of the theory and design techniques
discussed in the text apply to discrete-time systems in general.

By the time Discrete-Time Signal Processing was published in 1989, the basic
principles of DSP were commonly taught at the undergraduate level, sometimes even
as part of a first course on linear systems. or at a somewhat more advanced level in
third-year, fourth-year, or beginning graduate subjects. Therefore, it was appropriate to
expand considerably the treatment of such topics as linear systems. sampling, multirate
signal processing. applications, and spectral analysis. In addition, more examples were
included to emphasize and illustrate important concepts. We also removed and con-
densed some topics that time had shown were not fundamental to the understanding of
discrete-time signal processing. Consistent with the importance that we placed on well
constructed examples and homework problems, the new text contained more than 400
problems.

In the decade or so since Discrefe-Time Signal Processing was published, some
important new concepts have been developed, the capability of digital integrated cir-
cuits has grown exponentially, and an increasing number of applications have emerged.
However, the underlying basics and fundamentals remain largely the same albeit with
a refinement of emphasis. understanding and pedagogy. Consequently when we looked
at what was needed to keep Discrete-Time Signal Processing up-lo-date as a textbook
emphasizing the fundamentals of DSP, we found that the changes needed were far less
drastic than before. In planning this current revision we were guided by the princi-
ple that the main objective of a fundamental textbook is to uncover a subject rather
than to cover it. Consequently. our goal 1n this current revision is to make the sub-
ject of discrete-time signal processing even more accessible to students and practicing
engineers, without compromising on coverage of what we consider to be the essential
concepts that define the field. Toward this end we have considerably expanded our cov-
erage of multi-rate signal processing due to its importance in oversampled A-to-D and
D-to-A conversion and digital filter implementation. We have added a discussion of the
cosine transform, which plays a central role in data compression standards. We have
also removed some material that we judged to be of lesser importance in the present

Xix



XX Preface

context. or morc appropriate for advanced textbooks and upper level graduate courses.
Many of the concepts that were removed {from the text (such as basic results on the
cepstrum) have reappearcd in some of the new homework problems.

A major part of our emphasis in this revision has been directed toward the home-
work probiems and examples. We have significantly increased the number of examples
which are important in illustrating and understanding the basic concepts, and we have
increased the number of homework problems. Furthermore, the homework problems
have been reorganized according to their level of difficulty and sophistication, and an-
swers are provided to a selected set of problems. The instructor’s manual available from
the publisher contains updated solutions for all of the problems in the book. These so-
lutions were prepared by Li Lec and Maya Said of MIT and Jordan Rosenthal and
Greg Slabaugh of Georgia Tech. This manual also contains some suggested exam prob-
lems based on our courses at MIT, Georgia Tech and the University of Massachusetts
Dartmouth.

As in the earlier texts. it is assumed that the reader has a background of advanced
calculus. along with a good understanding of the elements of complex numbers and vari-
ables. In this edition, we have refrained from the use of complex contour integration
in order to make the discussion accessible to a wider audience. An exposure to linear
system theory for continuous-time signals. including Laplace and Fourier transforms,
as taught in most undergraduate electrical and mechanical engineering curricula is still
a basic prerequisite. With this background. the book is self-contained. In particular, no
prior experience with discrete-time signals. z-transforms, discrete Fourier transforms.
and the like is assumed. In later sections of some chapters. some topics such as quanti-
zation noise are included that assume a basic background in stochastic signals. A brief
review of the background for these sections is included in Chapter 2and in Appendix A.

[t has become common in many signal processing courses to include exercises to be
done on a computer, and many of the homework problems in this book are easily turned
into problems to be solved with the aid of a computer. As in the first edition. we have
purposely avoided providing special software to implement algorithms described in this
book, for a variety of reasons. Foremost among them is that there are a variety of in-
expensive signal processing software packages readily available for demonstrating and
implementing signal processing on any of the popular personal computers and work-
stations, These packages are well documented and have excellent technical support,
and many of them have excellent user interfaces that make them easily accessible to
students. Furthermore, they are in a constant state of evolution, which strongly suggests
that available software for classroom use should be constantly reviewed and updated.
We share the enthusiasm of many for MATLAB, which an increasing number of stu-
dents are learning at early stages of their education. However. we continue to prefer a
presentation that utilizes the power of computational tools such as MATLARB to create
examples and illustrations of the theory and fundamentals for use in the text, but does
not let issues of programming syntax and functionality of the software environment
detract from the emphasis on the concepts and the way that they are used. We firmly
believe that there is enormous value in hands-on experience. Indeed, software tools
such as MATLAB allow students to implement sophisticated signal processing systems
on their own personal computers, and we feel that there is great benefit to this once
the student is confident of the fundamentals and is capable of sorting out programming
mistakes from conceptual errors. For this reason, the instructor’s manual contains a sec-
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tion of suggestions for assignments in the inexpensive texts Computer-Based Exercises
for Signal Processing Using Martlab 5 by McClellan, et al., and Computer Explorations
in Signals and Systems Using Marlab by Buck, Daniel and Singer., both of which are
also available from Prentice-Hall, Inc. These suggestions link projects in these com-
puter exercise books o specific sections. examples and problems in this textbook. This
will allow instructors to design computer assignments which are related to the material
and examples they have covered in class. and to link these computer assignments to
traditional analytic homework problems to reinforce the concepts demonstrated there.

The material in this book is organized in a way that provides considerable flexi-
bility in its use at both the undergraduate and graduate level. A typical one-semester
undergraduate elective might cover in depth Chapter 2, Sections 2.0-2.9; Chapter 3;
Chapter 4, Sections 4.0—4.6; Chapter 5. Sections 5.0-5.3; Chapter 6, Sections 6.0-6.5;
Chapter 7, Sections 7.0-7.3 and a brief overview of Sections 7.4-7.5. If students have
studied discrete-time signals and systems in a general signals and systems course, it
would be possible to move more quickly through the material of Chapters 2, 3, and 4.
thus freeing time for covering Chapter 8. A first-year graduate course could augment
the above topics with the remaining topics in Chapter 5, a discussion of multirate signal
processing (Section 4.7) an exposure to some of the quantization issues introduced in
Section 4.8 and perhaps an introduction to noise shaping in A/D and D/A converters as
discussed in Section 4.9. A first-year graduate course should also include exposure to
some of the quantization issues addressed in Sections 6.6-6.9, 10 a discussion of optimal
FIR filters as incorporated in Sections 7.4 and 7.5, and a thorough treatment of the
discrete Fourier transform (Chapter 8) and its computation using the FFT (Chapter 9).
The discussion of the DFT can be effectively augmented with many of the examples in
Chapter 10. In a two-semester graduate course, the entire text together with a number
of additional advanced topics can be covered.

In Chapter 2, we introduce the basic class of discrete-time signals and systems and
define basic system properties such as linearity, time invariance, stability, and causality.
The primary focus of the book is on linear time-invariant systems because of the rich
set of tools available for designing and analyzing this class of systems. In particular. in
Chapter 2 we develop the time-domain representation of linear time-invariant systems
through the convolution sum and introduce the class of linear time-invariant systems
represented by linear constant-coefficient difference equations. In Chapter 6, we de-
velop this class of systems in considerably more detail. Also in Chapter 2 we introduce
the frequency-domain representation of signals and systems through the Fourier trans-
form. The primary focus in Chapter 2 is on the representation of sequences in terms
of the Fourier transform. i.e., as a linear combination of complex exponentials, and the
development of the basic properties of the Fourier transform.

In Chapter 3. we develop the z-transform as a generalization of the Fourier trans-
form. This chapter focuses on developing the basic theorems and properties of the
z-transform and the development of the partial fraction expansion method for the in-
verse transform operation. In Chapter 5, the results developed in Chapters 3 and 4 are
used extensively in a detailed discussion ot the representation and analysis of linear
time-invariant systems.

In Chapter 4, we carry out a detailed discussion of the relationship between
continuous-time and discrete-time signals when the discrete-time signals are obtained
through periodic sampling of continuous-time signals. This includes a development of
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the Nyquist sampling theorem. In addition. we discuss upsampling and downsampling
of discrete-time signals, as used. for example, in multirate signal processing systems
and for sampling rate conversion. The chapter concludes with a discussion of some of
the practical issues encountered in conversion from continuous time to discrete time
including prefiltering to avoid aliasing, modeling the effects of amplitude quantization
when the discrete-time signals are represented digitally, and the use of oversampling in
simplifying the A-to-D and D-to-A conversion processes.

In Chapter S we apply the concepts developed in the previous chapters to a de-
tailed study of the properties of linear time-invariant systems. We define the class of
ideal, frequency-selective filters and develop the system function and pole-zero rep-
resentation for systems described by linear constant-coefficient difference equations.
a class of systems whose implementation is considered in detail in Chapter 6. Also in
Chapter 5. we define and discuss group delay, phase response and phase distortion,
and the relationships between the magnitude response and the phase response of sys-
tems, including a discussion ol minimum-phase, allpass, and generalized linear phase
systems.

In Chapter 6, we focus specifically on systems described by linear constant-
coefficient difference equations and develop their representation in terms of black
diagrams and linear signal flow graphs. Much of this chapter is concerned with develop-
ing a variety of the important system structures and comparing some of their properties.
The importance of this discussion and the variety of filter structures relate to the fact
that in a practical implementation of a discrete-time system. the effects of coefficient
inaccuracies and arithmetic error can be very dependent on the specific structure used.
While these basic issues are similar whether the technology used for implementation
is digital or discrete-time analog, we illustrate them in this chapter in the context of a
digital implementation through a discussion of the effects of coefficient quantization
and arithmetic roundoff noise for digital filters.

While Chapter 6 is concerned with the representation and implementation of
linear constant-coefficient difference equations, Chapter 7 is a discussion of the proce-
dures for obtaining the coefficients of this class of difference equations to approximate
a desired system response. The design techniques separate into those used for infinite
impulse response (IIR) filters and those used for finite impulse response (FIR) filters.

In continuous-time linear system theory, the Fourier transform is primarily an an-
alytical tool for representing signals and systems. In contrast. in the discrete-time case,
many signal processing systems and algorithms involve the explicit computation of the
Fourier transform. While the Fourier transform itself cannot be computed, a sampled
version of it. the discrete Fourier transform (DFT). can be computed. and for finite-
length signals the DFT is a complete Fourier representation of the signal. In Chapter 8.
the discrete Fourier transform is introduced and its properties and relationship to the
discrete-time Fourier transform are developed in detail. In this chapter we also provide
an introduction to the discrete cosine transform which is playing an increasingly impor-
tant role in many applications including audio and video compression. In Chapter 9,
the rich and important variety of algorithms for computing or generating the discrele
Fourier transform is introduced and discussed, including the Goertzel algorithm, the
fast Fourier transform (FFT) algorithms, and the chirp transform.

With the background developedin the earlier chapters and particularly Chapters 2,
3.5.and 8, we focus in Chapter 10 on Fourier analysis of signals using the discrete Fourier
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transform. Without a careful understanding of the issues involved and the relationship
between the DFT and the Fourier transform. using the DFT for practical signal analysis
can often lead to confusions and misinterpretations. We address a number of these
issues in Chapter 10. We also consider in some detail the Fourier analysis of signals with
time-varying characteristics by means of the time-dependent Fourier transform.

In Chapter 11, we introduce the discrete Hilbert transform. This transform arises
in a variety of practical applications. including inverse filtering, complex representations
for real bandpass signals. single-sideband modulation techniques, and many others.

With this edition we thank and welcome Protessor John Buck. John has been a
long time contributor to this book through his teaching of the subject while a student at
MIT and more recently as a member of the faculty at the University of Massachusetts
Dartmouth. In this edition he has taken the major responsibility for a total reworking
and reorganization of the homework problems and many of the examples in the book.
His insight and dedication to the task are obvious in the final result.

Alan V. Oppenheim
Ronald W. Schafer
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