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PREFACE

This is a book about mathematical modelling. The aim of the book is
threefold:

1.  To teach the basic skills of modelling

2. To introduce a basic tool for modelling, namely, ordinary differ-
ential equations

3.  To show the wide scope of applications which can be modelled
with ordinary differential equations

The book is not a reference manual and does not pretend to cover com-
pletely either one of the fields of modelling or ordinary differential equa-
tions. It is'primarily meant as an elementary text to be used in a lecture
room. It canl, however, also be read as a self-study program since each
model is déveloped from first principles, examples are provided in the
text to clarify new definitions, and carefully chosen exercises are given
in each section to strengthen the understanding of the material and the
skill to construct models. Supplementary references are also given at
the end of each section to stimulate further reading.

‘The only prereqﬁisité for this book is a fair background in differential
and integral calculus of one variable (including Taylor series) and the
basic notions of a partial derlvatlve and a vector in two or three dimen-
sions.

The first vetsion of this book in the form of classroom notes was written
in 1972. As the material was tested in the classroom over two decades,
some material was discarded, new models were added, and the selection
of exercises and projects was refined. This book is the end result of a
marriage between the academic goals set by the teacher and the feedback
through questionnaires and examinations of the students. The favorable
comments of ex-students working as applied mathematicians in industry
indicate that the.choice of material and the level of sophxstlcatnon in the
book are satlsfactory

Some mathematicians think that modelling is a rather obvious exercise,
and hence a textbook should concentrate on mathematxcal theory and
leavé the rest to common sense. Anyone who has done some mathemat-
ical’ WOrk fot’ mdustl‘y knows that this v1ewpomt is false and ‘that the



mathematical solution of some mathematical equations is only a part
(many times the easiest part) of the modelling process. In this book,
the theory of differential equations and the modelling process are inter-
woven purposefully, not only to convey the importance of both, but also
to highlight the essential interaction between them.

/
/

‘There are a number of interesting models in the subsequent pages, and
it is hoped that the reader shall enjoy reading about them, but to learn
something about modelling the exercises must be done. It is nice to
watch a good game of tennis, but as long as you are sitting in the stand,
your game will not improve! You can check your answers at the back of

the book.

Apart from the exercises, there is a section on projects at the end of each
chapter. These are mainly intended for the computer-literate reader
and can also be used in tutorials.

The proofs of theorems appear in a section at the end of each chapter
to facilitate the flow of the argument in the model-building process. It
does not mean that the proofs are unimportant or that they should be
left out. \

The book consists of seven chapters. In the first chapter some basic
notions are introduced. The second chapter is a diverse collection of
real-life situations where a first order differential equation pops up in
the mathematical modelling. Each problem was chosen with a specific
purpose in mind. In general it is shown that there is much more to these
mathematical models than merely solving differential equations; on the
contrary, in some cases it is not even necessary to solve the differential
equation.

In the third chapter some elementary numerical methods are discussed,
with the accent on ways to develop more accurate methods rather than
presenting fairly sophisticated numerical methods. In a real-life situa-
tion the applied mathematician will probably use an efficient stahdard
numerical program which is part of the software of his computer.

Laplace transforms are introduced in the fourth chapter as a very neces-
sary tool for solving systems of linear differential equations. In the next
chapter we look at mathematical models i in which systems of differential
equations appear. Agam each problem is chosen to hlghhght d;fferent A




aspects of mathematical models and/or the theory of differential equa-
tions.

In the sixth chapter the standard applications of second order differ-
ential equations in mechanical vibrations and electrical networks are
- discussed, but it also includes a mathematical model on the ignition of
a car which teaches us to think before we spend a lot of time solving
differential equations. In the final chapter two situations are modelled,
namely, the pendulum and competing speties, to illustrate qualitative
" sclutions. '

Through the years many people have contibuted to the creation of this
book. The discussions with my colleagues were very helpful, in particu-
lar the ideas of Gerhard Geldenhuys and Philip Fourie. The suggestion
to write this book came from Alan Jeffrey of the University of Newcastle
on Tyne. His interest and comments are deeply appreciated. The en-
couragement of Navin Sullivan in London carried the project through.
Finally, without the help of Hester Uys and Jan van Vuuren on the
computer, and Christelle Goldie with the sketches, there would not be
a book at all. ' »

Although this book may look like a jumble of disconnected appiications,
be warned - there is method in the madness, and you may learn more
than you thought you would. So start right away and enjoy the book.

TP Dreyer
.
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1

Introduction

1.1  Mathematical Modelling

Although mathematics had already been applied to real-life problems by
the Egyptians and other ancignt civilizations, the term “mathematical
model” is a fairly recent addition to the mathematical vocabulary. The
term signifies an attempt to describe the interplay between the physical
world on the one hand and abstract mathematics on the other hand.
It is customary to refer to a collection of equations, inequalities, and
assumptions as the “model”; but the term “mathematical modelling”
means more than that: it is an orderly structured manner in which a
real-life problem might be tackled. '

The process of mathematical ‘modelling can be broken up into seven
different stages, as is shown in the flow chart in Figure 1.1.1.

(1) Identification: The questions to be answered must be clarified.
The underlying mechanism at work in the physical situation must
be identified as accurately as possible. Formulate the problem in
words, and document the relevant data.

(2) Assumptions: The problem must be analysed to decide which
factors are 1mport.ant and which factors are to be ignored so that
_r‘eahstxc assumptions can be ‘made.

(3) Conmstruction: This is the translation of the problem into math-
. ematical language which normally results in a collection of equa-

. tions and/or inequalities after the variables had been idenlified.

" The “word” problem is tra.nsformed into an abstract mathematical
problem.

.

(4) Analysxs The mathematical problem is solved so that the un-
known variables are expressed in terms of known quantities, and/or
it is analysed to obtain information about parameters.

(5) Interpretation: The solution to the abstract mathematical prob-

lem must be compared to the original “word” problem to see if it

* makes sense in the real-world situation. If not, go back to formu-
late more realistic assumptions, and construct a new model.

1
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2 ' Chapter 1 Introduction

(6) Validation: Check whether the solution agrees with the data
of the real-world problem. If the correlation is unsatisfactory,
return to the “word” problem for a re-appraisal of the data and
the assumptions. Modify or add assumptions and construct-a new
model. ;

(7) Implementation: If the solution agrees with the data, then the
. model can be used to predict what will-bappen in the future, or
conclusions can be drawn to help in future planning, etc. In the
" case of predictions care should be taken to determine the time
interval in which the predictions are valid. '

Identification

.| Assumptions

C

onstruction

Analysis

Interpretation

Valid ation

' [ Implementation ]

Figure 1.1.1: Flow chart of the modelling progess

In a specific problem we may not use all seven stages, or some stages
may be trivial. However, even though we will not state each stage
explicitly in every model in this book, it is always the way in which we,
think about each problem. ». . : :

Obviously a single book cannot j:over' all the different types of mathe-
matical models. To narrow the field one could differentiate models either
by the type of physical problem or by the type of mathematics needed to
solve the problem. For example, in the first case only problems related
to epidemics could be discussed, or in the second case the models can -
be restricted to those using systems of linear equations. In this book
the second option was chosen with ordinary differential equations as the
unifying theme of the different mathematical models.

e Do: Exercise 1 in §1.5. ’ N




1.2 Boundary Value Problems 3

1.2 Boundary Value Problems

Ordinary differential equations originate naturally in most of the branches
of science. In this book we shall look at examples in diverse fields like
physics, engineering, biology, economics, and medicine. A thorough
knowledge of differential equations is a powerful tool in the hands of an
applied mathematician with which to tackle these problems. We shall
try to equip you with this tool in the pages that follow. But ﬁrst a few
general definitions and background material.

Definition 1.1

‘An ordinary differential equation is an equation in
which an unknown function y(z) and the derivatives
of y(z) with respect to z appear. If the n-th deriva-
tive of y is the highest derivative in the equation, we
say that the differential equation is of the n-th or-
der. The domain of the differential equation is the
set of values of x on whick y(z) and tls derivatives
are deﬁned

Usually the domain is an interval I on the real line where I could be a
finite interval (a,b), the positive real numbers (0, 00); the non-negative
real numbers [0, o), or even the whole real line (—oo, oc). We shall use
this notation: a square bracket denotes that the endpoint is included
and a round bracket that the endpoint is not included in the interval.

Definition 1.2

If the differential equation is linear in the dependent
variable y and all its derivatives, we refer to it as a
linear differential equation. If not, we shall call it
a nonlinear differential equation. The general form
of a linear differential equation of the n-th order is

a"(z)g +...+ al(z-);%n-!- ao(;)y =“b(::r) (121)

B D .
ot R Y L




4 Chapter 1 Introdbétion;

7

The main purpose of this book is to teach you how to gonstruct math- v
ematical models of selected real-life problems. These problems were .

S

chosen to include an ordinary differential equation in the model. To ob-
tain a meaningful answer to the given problem, the differential equation

must be solved. The solution must then be interpreted in the light of

the assumptions that were made in the construction of the model, as
we have 8 Seen in §1. l

Apart from the dlfferentlal equation, the mathematical model will typ-
ically also include prescribed values of y and/or the derivatives of y at
isolated points in the interval I, usually one or both of the endpoints.

Definition 1.3

The prescribed values of y and/or the derivatives of
y al the endpoinis of the interval are called bound-
ary values, and the problem of finding y(z) where y
appears in a differential equation as well as in pre-
scribed boundary values is called a boundary value
problem. If the independent variable z represents
time and all the boundary values are specified at
the left endpoint of the interval, the boundary value
problem is called an initial value problem.

When a boundary value problem i is encountered there are four questions
which must be answere,d
(1) What is meant by a “solution”?
(2) Does a solution exist?
(3) Is there more than one solution?
(4) Is the solution a continuous function of the boundary
values? ‘

Let us briefly discuss each .of these fmportant 'questioﬁé.

There are different ways in which “solution” can be understood. For
" example, do we require that the function y(z) should satisfy the dif-
ferential equation everywhere in I, or could there be a few exceptional




1.2 Boundary Value Problems 5

points where the highest derivative does not exist. Let {(I) denote the
interior of I which means the largest open interval in I. If I is itself
an open interval, then of course i(I) = I; otherwise one or both the
endpoints will be excluded. -

In this book, unless specifically stated otherwise, we shall use the word '
“solution” in the following sense:

Definition 1.4

A solution of a given boundary value probdlem on
the interval I is a function which is continuous on
- I, salisfies the differential equation at every poini
-z € i(I), and agrees with the prescnbed boundary
values. -

Note that the definition implies that the derivatives which appear in the
equation'musvt exist everywhere in i(I). A function which is differentiable
on an open interval is also continuous there (see [16] p. 166), but the
converse is not true - for example f(z) = |z| is continuous on [-1;1],
but the derivative does not exist at z = 0, even though the left hand
derivative and the right hand derivative do exist. (Remember that a
function is continuous at a point z = q if the left and right hand limits
exist and are both equal to f(a); and similarly for a derivative, both
left and right hand limits must exist and be equal to each other.)

However, the necessity of a more general definition of the term “so-
lution” will be shown in §2.8. There we shall need a slightly weaker
condition than continuity, namely piecewise continuity. We shall also
use piecewise continuous functions in §4.2.

‘Definition 1.5

A function f is said to be piecewise continuous on a
finite interval [a,b] if the interval can be subdivided
into a finite number of intervals with f continuous
on_eack of these intervals and if the jump in the
value of f al each of the endpoinis of these intervals
ts finile. :




6 Cbépter 1 Introduction

Note that the jump in the value of f is the difference between the left
and right hand limits, which must both exist if the jump is to be finite.
We shall continue the diseussion of piecewise continuity in §2.8 and §4.2.

e Do: Exercise 2 in §1.5.

The ezistence of a solution is usually settled by finding the solution
explicitly with the aid of mathematical techniques. However, there
are many differential equations whose solutions cannot be expressed
in terms of elementary functions (For example, the pendulum equation
0" +w?sin @ = 0 - see §7.2.) Then numerical techniques must be utilized
to calculate the value of the solution approximately at selected points
in the interval I. These calculations only make sense if one knows be-
forehand that a solution does indeed exist. In these cases the existence
of a solution to the boundary value problem must be proven indirectly,
without knowing what the solution really looks like. The construction
of proofs for the so-called existence theorems is an 1mp0rtant research
‘area in mathematics, :

Once the question of the existence of a solution is settled, the next
logical question is whether the known solution is the only possnble solu-
tion. If this is the case, then we say the solution is unique. Clearly the
uniqueness of the solution is very important for the interpretation of
the results of the model — in fact, if the solution is not unique, then all
the possible solutions must be found before any meaningful conclusions
can be drawn. Sometimes the uniqueness follows immediately by the
manner in which the solution ' was found; in other cases it is more com-
plicated and one usually relies on special theorems which were proved
beforehand. Both these approaches will be encountered in this book.

Finally, it is also very important to know how sensitive the solution is
to changes in the boundary values. The main reason for this is that
they are subject to errors. The crucial question is whether a small error
in the boundary values will cause a small error in the solution. If this

is the case the solution must be a continuous function of the boundary
values. .

s Do: Exercises 3, 4, 5 in §1.5.




1.3 Direction Fields T
1.3 Direction Fields

Consider the initial value problem

Y Py, W0)=a (1.3.1)
where « is a prescribed initial value and F is a given function. If a
solution y = f(z) exists, then the graph of this solution is a curve in
the (z,y)-plane passing through the point (0,a) on the y~ axis. For
different values of a, different solution curves are obtained so that one
can think of the (z,y)—plane as being filled with solution curves in
the sense that through every point in the plane passes a solution curve
corresponding ta some value of a (provided, of course, that F is defined
and smooth enough). The slope of the tangent. to each solution curve
at any point (a, f(a)) on the curve is F(a, f(a)) by (1.3.1). Consider, .
for example the boundary value problem

dy 2z(2*+1)
dz — y
¥0)=1 (1.3.3)

We shall see in Chapter 2 that the solution is y = z? + 1 (see Exercise
32 in §2.12).

(1.3.2)

' .
-t 3 ‘ 2

Figure 1.3.1: Solution of (1.3.2) and (1.3.3) -




8 Chapter 1 Introduction

By differentiation it follows that the slope of this solution curve is 2z.
On the other hand, by (1.3.2) we have

dy 2z(z?+1)

E- 32+1 =2z.

The function F(z,y) in (1.3.1) prescribes at each point (z,y) in the
plane where F is defined, a slope (or direction) for the solution curve
which passes through (z,y). We say btiefly that the differential equation
prescribes a direction field. If we choose a suitable rectangular mesh in
the plane, a useful picture of the direction field can be obtained. At
each point (a,b) of the mesh in the (z,y)—plane, a small line segment
(also called a lineal element) is drawn from (a,b) with slope F(a,b).
Since each of these line segments is a tangent to a solution curve, the
picture of all these line segments gives an indication of the shape of the
solution curves. Obviously, the finer the rectangular mesh, the better
this indication will be - provided that the mesh is not finer than the
thickness of the line segments!

In this way an idea of the behaviour of the solution curves can be ob-
tained, even though the solution of (1.3.1) may not be known.

—_— - -
/
{
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Figure 1.3.2: Direction field of (1.3.2)

Let us draw the direction field for the differential equation in (1.3.2)
on the subset R = {(z,y) : -2 < z < 2, =2 < y < 2} with the
-rectangular mesh points at 42, +1.5, £1.0, £0.5, and 0 for both z and
y- Then we need the slope at:81‘mesh: points. At the origin the slope is

B
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