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WELCOME

Welcome to the 1997 International Symposium on Low Power Electronics and Design. This is the
second year of this symposium, which is the result of a merger between the Symposium on Low
Power Electronics and the International Symposium on Low Power Design. Like its predecessors,
the symposium contains a mix of invited talks and contributed papers. All invited talks will be in
plenary sessions, and thus can be heard by all attendees. Most other sessions will

consist of two parallel tracks: one focusing on systems and CAD, the other focusing on circuits
and technology.

A total of 102 contributed papers were received. This strong response attests to the continuing
level of interest in low power design across the international VLSI technical community. Many
thanks to the authors who submitted papers, which report significant advances in the domain of
low power electronics and design. Even with the parallel sessions, we were able to accept only
42 regular papers. In addition to regular papers presented orally, we have accepted 17 poster
papers that will be displayed in two poster sessions scheduled during extended breaks, so that
attendees can visit all poster papers of interest to them.

The plenary sessions will be highlighted by invited talks, six in all, including two talks at the
keynote session on the first day. There will also be a special talk at the banquet that evening by
James Meindl, on the subject of the history of low power electronics, from his perspective of inno-
vative participation in that history over the past several decades.

An evening panel session on the second day will feature the fictional company, Speedy Micro-
systems, and its contractor team of experts who are trying to design their next-generation multi-
media microprocessor, with highly-demanding specs on power and performance. It should be a
stimulating event of interest to all attendees.

For the first time, we will offer two half-day tutorials, one on low-voltage design techniques and
another on CAD methodologies. These tutorials will present techniques employed currently in
industry as well as future trends.

Many thanks to the program committee for doing an excellent job of paper selection and session
organization. Thanks also to the panel organizers and panelists for what should prove to be an
enlightening and entertaining evening session. We thank Lew Terman for his continuing assis-
tance in preparations for the conference. Finally, we want to thank the ACM SIGDA and the IEEE
Circuits and Systems Society for their sponsorship, and the IEEE Solid-State Circuits Society for
their technical co-sponsorship and technical support.

We hope you will find the symposium both stimulating and helpful. Please give us your com-
ments and suggestions on any aspects of the conference.

Brock Barton, Massoud Pedram Anantha Chandrakasan, Sayfe Kiaei
Symposium Co-chairs Program Co-chairs

iii
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Low-Power CMOS Design through V; Control and Low-Swing Circuits

Takayasu Sakurai’, Hiroshi Kawaguchi® and Tadahiro Kuroda™

*} Institute of Industrial Science, Univ. of Tokyo, 7-22-1, Roppongi, Minato-ku, Tokyo, 106 Japan
E-mail:tsakurai @iis.u-tokyo.ac.Jp
*¥) Microelectronics Engineering Lab., Toshiba Corporation

Abstract
This paper describes some of the circuit level
techniques for low-power CMOS designs. Vg control
circuits are necessary for achieving low-threshold voltage
in high-speed low-voltage applications. As for the low-
swing circuit techniques, applications to a clock system,
logic part, and I/O's are discussed.

1. Introduction
CMOS power dissipation and delay are given by'"”
IH

Power = p, *C, *Vs Vi k + 1,010 *Vpp - (1)
The first term, in (1) represents dynamic power dissipation
due to charging and discharging of the load capacitance,
where p, is the switching probability, C, is the load
capacitance, Vg is the voltage swing of asignal, and f¢,  is
the clock frequency. The second term is the subthreshold
leak term and S is typically about 100mV/decade.

Figure 1 shows the plot for power and delay assuming
0.5um design rule. As seen from the figure, lowering V,
is effective in decreasing power but delay increases.
Fig.1(b) shows equi-delay curves and the delay can be
maintained if the Vg, is lowered as Vp, is reduced.
Lowering Vg, however, increases subthreshold leakage.
In order to cope with this problem, V; control schemes
have been proposed which are covered in Section 2.

In most cases, Vg in (1) is the same as V,, but in
low-swing circuits Vg is smaller than V. As seen from
Eq.(1), reducing V5 can be one promising way to decrease
power consumption. As for the low-swing circuit
techniques, applications to a clock system, logic part, and
I/O's are discussed in Section 3, 4, and §, respectively

2. V., control techniques

To maintain throughput while lowering supply voltage
to decrease power consumption, it is effective to lower the
threshold voltage of MOSFET's. There are, however,
issues associated with low V,,; in low V,,;, environments.

First, delay fluctuates intolerably with V;y fluctation
in low Vp, regime. For example, delay increase by 3
times for AV, = +0.15V at V5 of 1V. The second issue
is the subthreshold leakage increase. The leakage
increases by 10 times for every AV of - 0.1V. The third
problem is the inability for Ippq test.  Ippq test is necessary
to screen out LSI's with defects and micro-shorts which
develop to a failure in a long run.

In order to cope with these issues, Viy control
techniques have been proposed which are summarized in
Permission to make digital’hard copy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or dis-
tributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission
of ACM, Inc. To copy otherwise, to republish, to post on servers or to redistrib-

ute to lists, requires prior specific permission and/or a fee.
©1997 ACM 0-89791-903-3/97/08..$3.50

TABLE 1. Muli-Threshold Vi; CMOS{3.4], MTCMOS
in short, tries to decrease the subthreshold leak in standby
mode by inserting high V;,; MOSFET in series to normal
circuitry. The high-Vq,; device is tumed off in standby
mode and completely cut-off the leakage path. The
drawback is the large inserted MOSFET which increases
area and delay.

While the MTCMOS can solve only the standby
leakage problem, the Variable Threshold CMOS[5-9] (VT
CMOS) can solve all the three problems. It dynamically
varies Vpy through substrate-bias, Vgzz. Typically, Vgp is
controlled so as to compensate Vyy fluctations in the
active mode, while in the standby mode and in the Iy
testing, deep Vyy is applied to increase Vi and cut off the
subthreshold leakage current. The idea to control the Vgg so
as to minimize the subthreshold leakage under the
condition that a representative circuit shows sufficient
speed was also proposed (Frequency adaptive Threshold
CMOS, FTCMOS[10}).

The Elastic Vo CMOS|11], EVTCMOS in short,
controls both V, and Vg such that when Vi, is lowered
VBB becomes that much deeper to raise Vi and further
reduce power dissipation. Note that internal V,, and VSS
are provided by source-follower n- and p- transistors,
respectively, whose gate voltages are controlled. In order
to control the internal power supply voltage independent
from the power current, the source-follower transistors
should operate near the threshold. This requires very
large transistors.

In VTCMOS, it has been experimentally evaluated that
the number of substrate (well) contacts can be greatly
reduced in low voltage environments {7-9]. Using a
phase-locked loop and an SRAM ina VTCMOS gate-array
[8], the substrate noise influence has been shown to be
negligible even with 1/400 of the contact frequency
compared with the conventional gate-array. A DCT
(Discrete Cosine Transform) macro made with the
VTCMOS [7] has also been manufactured with substrate-
and well- contacts only at the periphery of the macro and it
worked without problems realizing more than one order of
magnitude smaller power dissipation than a DCT macro in
the conventional CMOS design.

3. Low-swing circuit for clock system

The four pie charts in Fig.2 shows power distribution
in VLSI's. As seen from the charts, the powerdistribution
of VLSI's differs from product to product. However, it is
interesting to note that a clock system and a logic part itself
consume almost the same power in various chips, and the
clock system consumes 20% to 45% of the total chip power.
One of the reasons for this large power consumption of the
clock system is that the transition ratio of the clock net is



one while that of the ordinary logic is about one third on
average.

In order to reduce the clock system power, it is
effective to reduce a clock voltage swing. Such idea is
embodied in the Reduced Clock Swing Flip-Flop
(RCSFP)[12]. Figure 3 shows circuit diagrams of the
RCSFF. The RCSFF is composed of a current-latch sense
amplifier and cross-coupled NAND gates which act as a
slave latch. This type of flip-flop was first introduced in
1994(14] and extensively used in a microprocessor
design[13]. The sense-amplifying F/F is often used with
low-swing circuits because there is no DC leakage path
even if the input is not full swing being different from the
conventional gates or F/F's.

The salient feature of the RCSFF is to accept a reduced
voltage swing clock. The voltage swing, Vckk, can be as
low as 1V. When a clock driver Type A in Fig. 4 is used,
power improvement is proportional to Vclk ', while it is
Vclk™ if Type B driver is used. Type A is easy to
implement but less efficient. Type B needs either an
external Vclk supply or a DC-DC converter.

The issue of the RCSFF is that when a clock is high to
Vclk, P1 and P2 do not switch off completely, leaving leak
current flowing through either P1 or P2. The power
consumption by this leak current turns out to be permissible
for some cases (see next section), but further power
improvement is possible by reducing the leak current
One way is to apply backgate bias to P1 and P2 and
increase the threshold voltage. The other way is to
increase the Vry, of P1 and P2 by ion-implant, which needs
process modification and is usually prohibitive. When the
clock is to be stopped, it should be stopped at V. Then
there is no leak current.

A. Area & Speed

The area of the RCSFF is about 20% smaller than the
conventional F/F as seen from Fig. 5 even when the well
for the precharge PMOS is separated.

As for delay, SPICE analysis is carried out assuming
typical parameters of a generic 0.5xm double metal CMOS
process. The delay depends on Wclk (Wclk is defined in
Fig.3). Since delay improvement is saturated at Wcik =
10pm, this value of Wclk is used in the area and power
estimation. Clock-to-Q delay is improved by a factor of
20% over the conventional F/F even when Vclk = 2.2V,
which can be easily realized by a clock driver of the Type
Al. Data setup time and hold time in reference to clock
are 0.04ns and Ons , respectively being independent from
Vclk, compared to 0.1ns and Ons for the conventional F/F.

B. Power
The power in the Fig.6 includes clock system power
per FF and the power of a F/F itself. The power
consumption is reduced to about 1/2~1/3 compared to the
conventional F/F depending on the type of the clock driver
and Vyg,.. In the best case studied here, 63% power
reduction is observed. TABLE 2 summarizes typical

performance improvement.

C. Application to reduced swing bus

For the RCSFF, the D and D input can also be small
voltage swing signals. Using this characteristics, the
RCSFF can be used to speed up RC delay of long buses.
By placing the RCSFF at the end of a long bus and by
sense-amplifying the slowly changing D input, RC delay
can be reduced to 1/3 compared to the conventional F/F
case (see Fig.7).

Let us consider what amount of power gain is observed
when a distributed RC lineis driven in full swing!"¥ at one
end and switched off when the other terminal becomes V..

o (=D* (e-4) P
%iu=l+%k21§(_)_2lcos{(k—"2')n(l—f)}e * 7 RC

2]

Q =j;lév(x,t)dx = CVDD{lJ,; Eme-{k—')’ 2 Rc}

k=1

If the energy per cycle, E (=QVpp), is expressed in
terms of the terminal voltage, V, (=V(L\t)), Ex0.3640.64V.,.
This means that about 50% power saving is possible if an
RC interconnect is driven when the voltage swing of V, is
0.2V .

4. Low-swing circuit for logic

A pass transistor logic is known to provide a low-
power design style. An attempt has been made to further
reduce the powerdelay product by reducing the signal
voltage swing. A Sense-Amplifying Pass-transistor Logic
(SAPL) [14] is such a circuit. In the SAPL, a reduced
output signal of NMOS pass-transistor logicis amplified by
a current latch sense-amplifier to gain speed and save
power dissipation as shown in Fig. 9 and Fig.10. The
SAPL has been applied toa 1.5ns 20bit carry skip adder in
a Discrete Cosine Transform (DCT) macro whose circuit
diagram is shown in Fig. 11. 50% speed, 30% area, and
50% power advantage were observed compared with the
conventional static CMOS design.

The SAPL is also applied to a 0.9ns 64bit to 32bit
double barrel shifter. In this case, 100% speed, 50% area,
and 50% power advantage were observed. The MPEG2
decoder LSI which utilizes the DCT and VLD macro with
SAPL operates under 0.9V supply voltage.

5. Low-swing circuit for IO

Application of low-swing circuit to IO's is also
possible. The circuit diagram is shown in Fig.14. The
transmitted signal is differential and again is received by a
current-latch type sense-amplifier F/F. The two chips are
put side by side and bonded directly with minimum
capacitance and inductance. The photos of the system are
shown in Figs.15 and 16.

At the frequency of 500MHz, the power consumption
is 13mW per bonding which includes output and input
power (see Fig. 17).
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TABLE 1 Comparison of various V 1y control techniques

MTCMOS VTCMOS EVTCMOS
Vv n-well
St'by-dB*High-vth *DD
Vbp VDD |_|
-, . control | __ -, i control
Scheme Low-vin | °*™7] (ssB) {; Sty oLy
Vss ~Vss Ly
p-well
Ref.[ 3,4 ] Ref.[5-9] Ref.[11]
Vpp on-off Vgg control Vpp&Vpgg control
+ lgypy reduction + AVy, compensation + AVy, compensation
Effect - 'st'by reduction + 'st'by reduction
+ IDDQ test + IDDQ test
Penalt - large serial MOSFET(*) - triple well (desirable) - large serial MOSFET
enaty slowgr,larger,lower yield operating near threshold( *)
- special latch

Fig. 2 Power distribution in VLSI's. MPUI is a low-end microprocessor for embedded use, MPU2 is a
high-end CPU with large amount of cache, ASSP1 is a MPEG2 decoder and ASSP2 is an ATM switch.
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Type B, Vclk is supplied by externally.

TABLE2  Performance comparison of RCSFF and Conventional F/F

Driver Velk[V] |Power Delay Area
Conventional 3.3 100% 100% 100%
RCSFF Type A1 2.2 59% 82% 83%
Vel =66V | TypeA2 | 1.3 48% | 123% | 83%
W ok =10pm Type B 22 48% 82% 83%
f clk =100MHz Type B 1.3 37% | 123% 83%
150 ___'__L__'___'___'_... 3
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Fig6. Power consumption for one Fig.7 Delay improvement of a

F/F. Clock interconnection length per
one F/F is assumed to be 200xm and
data activation ratio is assumed to be 3
0%. fclk is 100MHz. By applying 6V
well bias, the initial Vth of P1 and P2
(0.6V) increases to 1.4V.

long RC bus by RCSFF. Wclk=10u
m and Type Al clock driver is used.
Bus is differential and precharged to
VDD first and then CLK is asserted
when the voltage difference of D and
D becomes AVD.
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applied to 20bit skip-carry adder. The adder was used
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decoder chip which worked under 0.9V.
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applied to a 32bit barrel shifter. The shifter was used in
a Variable Length Decoder macro in a MPEG2 decoder
chip which worked under 0.9V.
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Abstract

This paper presents a survey of low power techniques for Read
Only Memories (ROMs). Significant savings in power dissipation
are achieved through the use of techniques at the circuit and ar-
chitecture level. The ROM circuits have been designed in 0.35 um
CMOS technology and simulated using PowerMill.

Introduction

With the development of submicron technologies and the increase
of complexity on VLSI chips, the market for portable applications,
digital signal processors and ASIC implementations has focused
significant effort on the design of low power systems [1]. ROMs
(Read Only Memories) are an important part of many digital sys-
tems (e.g., digital filters, digital signal processors, microprocessors
etc). The high area density of ROMs makes these types of circuits
very attractive to store fixed information (e.g., coefficients of a dig-
ital filter). As new submicron technologies are developed, the fast
speeds of these processes allow the implementation of architectures
which could not be implemented in the past. Also the increase in
the number of metal layers becomes a main instrument to reduce
switched capacitance without penalty in the density of the ROM.
Significant savings in power are achieved through the implementa-
tion of several techniques. The focus of this paper is on techniques
at the architecture and transistor levels and their global impact on
power dissipation.

The first section of the paper explains traditional ROM designs
and the sources of power dissipation. The second part of this paper
discusses low power techniques at the architecture level. The next
section presents techniques that are applicable at the circuit level.
The last section shows results and conclusions.

1 Sources of Power Dissipation

Figure 1 shows the traditional architecture of a ROM. The decoder
selects among the row lines that run through the ROM core, turning
on only one row line at a given time. The column multiplexer and
driver select which column is being read and drive the data bus.
The control logic generates the internal signals of the ROM (i.e.,
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precharge, read etc.). The ROM core is used to store information
through the placement of transistors. There are two main types of
ROMS: NAND array, where pull down transistors are in series and
NOR array where the pull down transistors are in parallel. This
paper focuses on ROMs using a NOR array since these structures
are faster than NAND arrays and are the most frequently used [2].

Address | B || il T hd Row Line

Decoder

Rom Core
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Figure 1: ROM Block Diagram
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Figure 2: ROM Bitlines

In order to save power, most ROMs precharge during one phase
of the clock and evaluate in the other. Table 1 shows the power
dissipation in a 2K x 18 ROM designed in 0.6 pm technology at
3.3V and clocked at 10 MHz. As the table shows, the precharge of
the bit lines in the ROM core dissipates most of the power. There
are two main reasons for this. First, bit lines have large capacitance
(drain capacitance of the transistors tied to this line, parallel plate
and fringe component to substrate plus the overlap of the row lines
and other metal layers). Second, more than 18 bit lines are switched
per access; this is due to the word line selecting more bit lines than



