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Preface

The purpose of this monograph is to create a general framework for the study
of optimal algorithms for problems that are solved approximately. For
generality the setting is abstract, but we present many applications to practical
problems and provide examples to illustrate concepts and major theorems.

The work presented here is motivated by research in many fields. Influential
have been questions, concepts, and results from complexity theory, algorithmic
analysis, applied mathematics and numerical analysis, the mathematical theory
of approximation (particularly the work on n-widths in the sense of Gelfand and
Kolmogorov), applied approximation theory (particularly the theory of splines),
as well as earlier work on optimal algorithms. But many of the questions we ask
(see Overview) are new. We present a different view of algorithms and
complexity and must request the reader’s indulgence because new concepts and
questions require some new vocabulary.

Because we believe our readers come from diverse backgrounds and have
varied interests, we provide (see Recommended Reading) eight suggested tracks
through the book.

The monograph marks the coming together of two streams of research. One
stream, which involved work on optimal algorithms for problems such as the
search for the maximum, integration, and approximation, had its inception with
the work of Kiefer, Sard, and Nikolskij around 1950. These pioneer researchers,
and those who followed them, generally worked, with only a few significant
exceptions, on rather specific problems. Only rarely was the complexity of the
optimal algorithm included. The second stream, which studied the solution of
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nonlinear equations, began with Traub in 1961. See Part C for a history and an

extensive annotated bibliography.
In two long reports (General Theory of Optimal Error Algorithms and

Analytic Complexity, Parts A and B) we showed that both streams could be
united in one general framework. This monograph includes extended and
improved material from these two reports.

Often a long monograph summarizes knowledge in a field. This monograph,
however, may be viewed as a report on work in progress. We provide a
foundation for a scientific field that is rapidly changing. Therefore we list
numerous conjectures and open problems as well as alternative models which
need to be explored. There are many more questions which we have chosen not
to list.

We want to acknowledge many debts. B. Kacewicz and G. W. Wasilkowski
coauthored some parts of this book as indicated in the table of contents. In
addition, they carefully read the manuscript and suggested valuable improve-
ments. H. T. Kung and K. Sikorski checked portions of the manuscript and A.
G. Sukharev provided valuable references to the Soviet literature. A. Bojanczyk,
A. Kiefbasinski, and A. Werschulz commented on an earlier version of this
manuscript. D. Josephson, our superb technical typist, prepared the entire
manuscript and was always patient about making just one more change. N. K.
Brassfield was invaluable in helping us with proofreading and index prepara-
tion.

Much of the research was done in the splendid research environments of the
Computer Science Department at Carnegie-Mellon University and of the
Institute of Informatics at the University of Warsaw. We are indebted to the
hospitality of the University of California at Berkeley, where we spent the
academic year 1978-1979 while completing the research and writing of the
manuscript. We are indebted to M. Blum and R. Karp for arranging this visit
and for stimulating conversations. Finally, we are pleased to thank the National
Science Foundation (Grant MCS-7823676) and the Office of Naval Research
(Contract N00014-76-C-0370) for supporting the research reported here.



Recommended Reading

We recommend different portions of the book to readers with various
interests. To get some feel for the material, we suggest that all readers should be
familiar with the Preface, Overview, Introductions to Parts A-C and the
Introductions to each of the 10 chapters in Part A. For readers with particular
interests, we make the following recommendations.

RESEARCHERS INTERESTED IN OPEN PROBLEMS  Our theory suggests many new
problems. Conjectures, questions, and open problems are scattered throughout
this book. See, in particular, Part A: Chapter 6, Section 7; Chapter 8, Sections 3
and 7; Chapter 10, Sections 2 and 5; Part B: Section 10.

RESEARCHERS INTERESTED IN THE LITERATURE ON HisTorRY Bibliographical
references and historical material may be found in many places. Part C is
devoted entirely to a history and an annotated bibliography. Bibliographies may
be found at the end of Parts A and B. See also Part A: Chapter 1, Section 2;
Chapter 4, Section !; Chapter 6, Sections 3-6; Chapter 8, Section 1; Part B:
Section 2.

TreoreTicAL COMPUTER SCIENTISTS [those interested in algorithms and
complexity but not specifically in analytic complexity] Part A: Chapter 1,
Sections 2, 3; Chapters 5, 9, 10; Part B: Sections 2, 8, 11.

MATHEMATICIANS [material of greatest mathematical interest] Part A:
Chapters 2 and 7; Part B: Sections 4-7.
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xiv RECOMMENDED READING

MATHEMATICAL THEORY OF APPROXIMATION Part A: Chapter 2, Section 6;
Chapter 3, Section §; Chapter 7, Section 4.

APPLIED APPROXIMATION THEORY Part A: Chapters 4 and 6; Part C.

NUMERICAL ANALYSTS AND APPLIED MATHEMATICIANS  Part A: Chapters 3, 4,
6, 8-10; Part C.

ScienTisTs AND ENGINEERS ~ Appropriate sections of the applications chapters
(Part A: Chapters 6 and 8), depending on individual interests.
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Although this may seem a paradox, all exact science
is dominated by the idea of approximation.

B. Russell

Overview

We provide the mathematical foundations of a general theory of optimal
algorithms for problems which are solved approximately. This theory is called
analytic computational complexity. See Part A, Chapter 1, Section 4 for a
discussion of the nature of this field.

In this Overview we have to use words such as problem, information, and
optimal algorithm without definition. They are defined rigorously and in great
generality later.

We pose new kinds of questions and provide at least partial answers to many
of them. Some of these questions are listed later in this Overview. Because of
the richness of our domain, we must leave many open problems which we hope
will be settled later.

We cover topics ranging from those of concern to theoretical computer
scientists and mathematicians to those also of practical interest. We give
two examples.

Problem complexity is a measure of the intrinsic difficulty of obtaining the
solution to a problem no matter how that solution is obtained. We shall define
it (see Part A, Chapter 1, Sections 3 and 4) as the complexity of the “optimal
complexity algorithm” for solving the problem. (Problem complexity can only
be specified with respect to a model of computation and a class of “permissible”
information operators; we ignore such specification here.) The determination
of problem complexity is difficult and deep; it has been completely solved for
very few problems. When the complexity of a number of problems is at least
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2 OVERVIEW

approximately determined, we can hierarchically arrange problems according
to their difficulty. Several partial problem hierarchies are summarized in Part A,
Chapter 9. We believe that the determination of problem. complexities and
problem hierarchies should be one of the central problems of theoretical
computer science and mathematics.

A practical application of our work is the rationalization of the synthesis
of algorithms. Traditionally, algorithms are derived by ad hoc criteria. We
shall find that algorithms obtained by commonly used criteria may have no
relation to optimal algorithms (see Part A, Chapter 6, Remark 4.1) and that
algorithms using commonly used information may pay an arbitrarily high
penalty compared with the optimal algorithm using optimal information (see
Part A, Chapter 6, Section 6).

A central issue in computer science is the selection of the best algorithm
for solving a problem. Selection of the best algorithm is a multivariate opti-
mization problem with dimensions including time complexity, space complexity,
simplicity of program implementation, robustness, and stability. In this mono-
graph we deal only with time complexity although conclusions concerning
space complexity could also be easily obtained by changing the set of primitives
in the model of computation. In later work we shall investigate tradeoffs in
various dimensions for important problems. First we must understand how
to optimize in the important time complexity dimension.

The analysis needed to characterize and construct an optimal algorithm
(optimal in any of the senses of this book) for a particular problem can be a
difficult mathematical problem and will, in any case, require substantial analysis.
This may, however, be viewed as a precomputing cost.

We have not stated the domain or scope of this monograph. We must defer
a more precise specification until Part A, Chapter 1, Section 4 after certain
ideas have been introduced. Here we limit ourselves to a vague description.

We study problems which either cannot be solved exactly with finite com-
plexity or problems which we choose to solve only approximately for reasons
of efficiency. To the first class belong “most” problems of mathematics, science,
and engineering. See Part A, Chapters 6 and 8 for many applications. Prominent
exceptions are combinatorial and certain algebraic problems. Examples of the
second class are the approximate solution of large sparse linear systems and of
certain hard (for example, NP-complete) combinatorial optimization problems.
Indeed, our model includes algebraic complexity as a special case. See Part A,
Chapter 1, Examples 3.2 and 3.3, and Section 4.

The generality and power of the theory stems from the central role of
information. Adversary arguments based on the information used by an
algorithm lead to lower bound theorems. While the notion of information
leads to generality it also permits remarkable simplicity. Numerous earlier
papers obtain an optimal algorithm under various technical assumptions on
the class of algorithms and the class of problem elements. These assumptions



OVERVIEW 3

are often not verifiable. Our results depend only on the information used and
broad verifiable properties of a class of problem elements. They are independent
of the structure of an algorithm; they depend only on the information the
algorithm uses.

Our theory uses two mathematical models; for convenience we refer to them
here as models o and f. In what follows we limit our description to Part A;
a similar dichotomy exists for Part B (see Introduction to Part B).

In model « the basic optimality concepts of “optimal error algorithm™ and

“optimal information” are defined independently of a model of computation.
Model f consists of model o as well as concepts related to computation; the
basic optimality concept here is “optimal compliexity algorithm™ for a problem.
Much of Part A is devoted to model o for a number of reasons. Negative results
can often be proven using model o. Since these results are independent of a
model of computation, they are all the stronger. Furthermore, we can use
.powerful existing mathematical techniques to determine the optimal error
algorithm. Indeed, the optimal error algorithm using optimal information must
be determined before we can get good bounds on the optimal complexity
algorithm. ‘

We mentioned the difficulty of determining problem complexity. We must
almost always settle for upper and lower bounds. This is not surprising. Even
in algebraic complexity, which is included as a special case in our framework,
it is rare to know the exact problem complexity. However, we often have
extremely tight bounds on problem complexity. For example, if the optimal
error algorithm is a linear algorithm, then the bounds are always very tight.
(See Part A, Chapters 5 and 6.) For examples of tight complexity bounds when
there is no linear optimal algorithm, see Part A, Chapter 8 and Part B, Section 8.

We list 20 of the general questions to be studied. These 20 questions are
completely or partially answered, with the exception of two questions for which
we conjecture the answer.

1. What is a lower bound on the error of any algorithm for solving a
problem using given information?

2. In general is there an algorithm which gets arbitrarily close to this
lower bound?

3. When is the information strong enough to solve a problem to within
a given accuracy?

4. What is the optimal information for solving a problem?

5. What is the minimal number of linear functionals to solve a problem
to within a given accuracy?

6. For linear problems is there always a linear algorithm with optimal
error? If not, is there always a linear algorithm whose error is within a constant
factor of the optimal error? In a Hilbert space setting what is the value of this
constant?
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7. Given a specific problem, how do we characterize and construct an
optimal algorithm for its solution?
8. Given a problem, what are tight upper and lower bounds on its
complexity?
9. Can it be established that one problem is intrinsically harder than
another?
10. Do there exist linear problems with arbitrary complexity ? In particular,
do there exist linear problems which are arbitrarily hard?
11. What can be said in general about the dependence of complexity upon
the regularity of the class of “Problem elements”?
12. Are adaptive algorithms more powerful than nonadaptive algorithms
for solving linear problems?
13. Are adaptive algorithms more powerful than nonadaptive algorithms
for solving nonlinear problems?
14. What is the power of linear information operators?
15. What is the power of nonlinear information operators?
16. What is the error of the best algorithm using optimal adaptive linear
information for computing a simple zero of a nonlinear scalar function?
17. What is the error of the best algorithm using optimal adaptive linear
information for searching for the maximum of a unimodal function (generalized
Kiefer problem)?

The following questions deal with iterative information and iterative
algorithms:

18. What is the maximal order of any algorithm using given information?

19. What is the class of all problems which can be solved by iteration
using linear information?

20. What is the minimal number of linear functionals to iteratively solve
a system of nonlinear equations in N dimensions?

We describe the overall structure of this monograph. It is divided into three
parts. Parts A and B treat, respectively, a general information model and an
iterative information model. Part C consists of a short history and an annotated
bibliography of well over 300 item:s.

We end this Overview by describing our system for referring to material
within the text. Theorems, equations, remarks, etc. are separately numbered
for each section. A reference to material within the same chapter does not
name the chapter. A reference to material within the same part but different
chapter names the chapter. A reference to material in a different part names
the part and chapter.



PART A
GENERAL INFORMATION MODEL

INTRODUCTION

Central to our theory of optimal algorithms is the notion of information.
Part A is devoted to the study of “general information,” while Part B treats
“iterative information.”

We develop a theory of optimal algorithms using given information or
optimally chosen information. Two types of optimal algorithms will be of
interest, “optimal error algorithms” and “optimal complexity algorithms.” In
Chapter 6, we apply this theory to a wide range of linear problems, and in
Chapter 8 to a number of nonlinear problems.

A large portion of Part A (Chapters 2-6) is devoted to the theory of linear
problems using linear information and to the applications of this theory. This
emphasis is due to a number of factors,

1. Our results in the linear theory are very strong. In some cases, the
questions we pose can be completely answered.

2. Many important applications are specified by linear problems and
linear information.

3. The class of nonlinear information is too powerful (see Chapter 7) in
the general information setting.

We broadly summarize the contents of Part A. See the introductions to each
chapter for more detailed summaries.



6 GENERAL INFORMATION MODEL

CHaPTER | The basic concepts are formalized. An adversary principle leads
to sharp lower bounds on algorithm error. Our model of computation is defined.
The basic notions of optimal error algorithm and optimal complexity algorithm
are introduced. The scope of analytic complexity and »f this book are discussed.

CHAPTER 2 Chapters 26 treat linear problems and linear information. In
Chapter 2, the general theory of linear information is developed. We vary the
information operator and study the optimal information for solving a problem.
In a Hilbert space setting, we give a complete solution to the problem of optimal
information. We study adaptive information and prove the surprising result
that adaptive information is not more powerful than nonadaptive information
for a linear problem. Relations between Gelfand n-widths and nth minimal
diameters are determined.

CHAPTER 3 We study linear algorithms for linear problems; such algorithms
must have good time and space complexity. Very tight lower and upper com-
plexity bounds are established for any problem with a linear optimal error
algorithm. An especially constructed example establishes the existence of a
linear problem for which there is no linear optimal error algorithm; no such
example is known for “naturally” occurring problems. We use Smolyak’s
theorem to establish that algorithms optimal in the sense of Sard and Nikolskij
are optimal error algorithms. Relations between optimal linear algorithms and
the linear Kolmogorov n-widths are established.

CHAPTER 4 Generally, our analysis is worst case over all the problem
elements f in a class 3,. Here we study algorithms for which the local error
is almost as small as possible for every f from 3,. An algorithm which enjoys
this property has small deviation. Do there exist linear algorithms with small
deviation which are optimal or nearly optimal error algorithms? We introduce
spline algorithms and show they permit us to answer this question.

CHAPTER 5 We specify our model of computation for the linear case. We
show that there exist linear problems with essentially arbitrary complexity.
This implies the existence of arbitrarily hard linear problems and that there are
no “gaps” in the complexity function.

CHAPTER 6 We apply our theory to the solution of many different linear
problems. Included are the approximation of a linear functional, interpolation,
integration, approximation, and the solution of linear partial differential equa-
tions. Results are obtained for various spaces of problem elements. We obtain
optimal error and nearly optimal complexity algorithms, optimal information
operators, and very tight bounds on problem complexity for many applications.
In some cases, our new algorithms are faster than commonly used algorithms
by an unbounded factor.



