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FROM THE PREFACE TO THE FIRST EDITION

This book is an outgrowth of a year course in statistical mechanics that I have
been giving at the Massachusetts Institute of Technology. It is directed mainly to
graduate students in physics.

In this book the starting point of statistical mechanics is taken to be certain
phenomenological postulates, whose relation to quantum mechanics I try to state
as clearly as I can, and whose physical consequences I try to derive a$ §imply and
directly as I can.

Before the subject of statistical mechanics proper is presented, a brief but
self-contained discussion of thermodynamics and the classical kinetic theory of
gases is given. The qrder of this development is imperative, from a pedagogical
point of view, for two reasons. First, thermodynamics has successfully described
a large part of macroscopic experience, which is the concern of statistical
mechanics. It has done so not on the basis of molecular dynamics but on the
basis of a few simple and intuitive postulates stated in everyday terms. If we first
familiarize ourselves with thermodynamics, the task of statistical mechanics
reduces to the explanation of thermodynamics. Second, the classical kinetic
theory of gases is the only known special case in which thermodynamics can be
derived nearly from first principles, i.e., molecular dynamics. A study of this
special case will help us understand why statistical mechanics works.

A large part of this book is devoted to selected applications of statistical
mechanics. The selection is guided by the interest of the topic to physicists, its
value as an illustration of calculating techniques, and my personal taste.

To read the first half of the book the reader needs a good knowledge of
classical mechanics and some intuitive feeling for thermodynamics and kinetic
theory. To read the second half of the book he needs to have a working
knowledge of quantum mechanics. The mathematical knowledge required of the
reader does not exceed what he should have acquired in his study of classical
mechanics and quantum mechanics.

KersoN HuanG
Cambridge, Massachusetts
February 1963



PREFACE

This book is intended for use as a textbook for a one-year graduate course in
statistical mechanics, and as a reference book for workers in the field.

Significant changes and additions have been made at various places in the .
text and in the problems to make the book more instructive. The general
approach remains the same as that stated in the preface to the first edition.

The most substantive change is the addition of the last three chapters on the
Landau-Wilson approach to critical phenomena. 1 hope that these chapters will
provide the uninitiated reader with an introduction to this fascinating and
important subject, which has developed since the first edition of this book.

To make room for the additions, 1 have omitted or abridged some of the
original material, notably the sections on many-body theory and “rigorous”
statistical mechanics, which by now have become separate fields.

All the material in this book probably cannot be covered in a one-year
course (even if that were deemed desirable). It might be helpful, therefore, to list
the chapters that form the “hard core” of the book. They are the following:
Chapters 3, 4, 6, 7, 8, 11, 12 (excepting 35,176,177, 1.8).

‘KERSON HUANG
Marblehead, Massachusetts '
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THE LAWS OF
THERMODYNAMICS

1.1 PRELIMINARIES

Thermodynamics is a phenomenological theory of matter. As such, it draws its
concepts directly from experiments. The following 1s a list of some working
concepts which the physicist, through experience, has found it convenient to
introduce. We shall be extremely brief, as the reader is assumed to be familiar
with these concepts.

(a)
(b)

(c)
(d)
(e)

A thermodynamic system is any macroscopic system.
Thermodynamic parameters are measurable macroscopic quantities as-
sociated with the system, such as the pressure P, the volume V, the
temperature 7, and the magnetic field H. They are defined experimen-
tally.
A thermodynamic state is specified by a set of values of all the
thermodynamic parameters necessary for the description of the system.
Thermodynamic equilibrium prevails when the thermodynamic state of
the system does not change with time.
The equation of state is a functional relationship among the thermody-
namic parameters for a system in equilibrium. If P, V, and T are the
thermodynamic parameters of the system, the equation of state takes
the form :

f(P,V,T)=0
which reduces the number of independent variables of the system from
three to two, The function f is assumed to be given as part of the
specification of the system. It is customary to represent the state of
such a system by a point in the three-dimensional P-V-T space. The
equation of state then defines a surface in this space, as shown in Fig.
1.1. Any point lying on this surface represents a state in equilibrium. In
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Flg. 1.1 Geometrical representation of the
equation of state.

thermodynamics a state automatically means a state in equilibrium
unless otherwise specified.

(f) A thermodynamic transformation is a change of state. If the initial state
is an equilibrium state, the transformation can be brought about only
by changes in the external condition of the system. The transformation
is quasi-static if the external condition changes so slowly that at any
moment the system is approximately in ethbrmm It is reversible u"'"
the transformation retraces its history in time when the external
condition retraces its history in time. A reversible transformation is
quasi-static, but the converge is not necessarily true. For exampler a
gas that freely expands into successive infinitesimal volume elements
undergoes a quasi-static transformation but not a reversible one. -

(g) The P-V diagram of a system is the projection of the surface of the
equation of state onto the P-V plane. Every point on the P-V diagram
therefore represents an equilibrium state. A reversible transformation
is a continuous path on the P-V diagram. Reversible transformations
of specific types give rise to paths with specific names, such as
isotherms, adiabatics, etc. A transformation that is not reversible
cannot be so represented.

(k) The concept of work is taken over from mechanics. For example, for a
system whose parameters are P, V, and T, the work dW done by a
system in an infinitesimal transformation in which the volume in-
creases by dV is given by ~

dW=PdV

(i) Heat is what is absorbed by a homogeneous system if its~temperature
increases while no work is done. If AQ is a small amount of the heat
absorbed, and AT is the small change in temperature: accompa.nymg
the absorption of heat, the heat capacity C is defined by ’

AQ=CAT - ,
The heat capacity depends on the detailed nature of the system andis

given as a part of the specification of the system. It is an experimental
fact that, for the same AT, AQ is different for different ways of heating
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up the system. Correspondingly, the heat capacity depends on the
manner of heating. Commonly considered heat capacities are C,, and
C,, which respectively correspond to heating at constants V' and P.
Heat capacities per unit mass or per mole of a substance are called
specific heats.

(J) A heat reservoir, or simply reservoir, is a system so large that the gain
or loss of any finite amount of heat does not change its temperature.

(k) A system is thermally isolated if no heat exchange can take place
between it and the external world. Thermal isolation may be achieved
by surrounding a system with an adiabatic wall. Any transformation
the system can undergo in thermal isolation is said to take place
adiabatically. :

(/) A thermodynamic quantity is said to be extensive if it is proportional
to the amount of substance in the system under consideration and is
said to be intensive if it is independent of the amount of substance in
the system under consideration. It is an important empirical fact that
to a good approximation thermodynamic quantities are either exten-
sive or intensive.

(m) The ideal gas is an important idealized thermodynamic system. Experi-
mentally all gases behave in a universal way when they are sufficiently
dilute. The ideal gas is an idealization of this limiting behavior. The
parameters for an ideal gas are pressure P, volume V, temperature T,
and number of molecules N. The equation of state is given by Boyle’s
law: '

PV ’
= constant  (for constant temperature)

The value of this constant depends on the experimental scale of
temperature used.

(n) The equation of state of an ideal gas in fact defines a temperature
scale, the ideal-gas temperature T:

PV = NkT
where
k=1.38x10""erg/deg

which is called Boltzmann’s constant. Its value is determined by the
conventional choice of temperature intervals, namely, the Centigrade
degree. This scale has a universal character because the ideal gas has a
universal character. The origin 7= 0 is here arbitrarily chosen. Later
we see that it actually has an absolute meaning according to the second
law of thermodynamics.

To construct the ideal-gas temperature scale we may proceed as follows.
Measure PV/Nk of an ideal gas at the temperature at which water boils and at
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I
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0 Freezing Boiling
point of - point of
water water Fig. 1.2 The ideal-gas temperature scale.

which water freezes. Plot these two points and draw a straight line through them,
as shown in Fig. 1.2. The intercept of this line with the abscissa is chosen to be
the origin of the scale. The intervals of the temperature scale are so chosen that
there are 100 equal divisions between the boiling and the freezing points of water.
The resulting scale is the Kelvin scale (K). To use the scale, bring anything whose
temperature is 10 be measured into thermal contact with an ideal gas (e.g., helium
gas at sufficiently low density), measure PV/Nk of the ideal gas, and read off the
temperature from Fig. 1.2. An equivalent form of the equation of state of an ideal
gas is
PV = nRT .
where n is the number of moles of the gas and R is the gas constant:
R = 8.315 joule/deg
= 1.986 cal/deg
= 0.0821 liter-atm /deg

Its value follows from the value of Boltzmann’s constant and Avogadro’s
number: :

Avogadro’s number = 6.205 X 10 atoms/mol  ~

Most of these concepts are properly understood only in molecular terms.
Here we have to be satisfied with empirical definitions.

In the following we introduce thermodynamic laws, which may be regarded
as mathematical axioms defining a mathematical model. It is possible to deduce
rigorous consequences of these axioms, but it is important to remember that this
model does not rigorously correspond to the physical world, for it ignores the
atomic structure of matter, and will thus inevitably fail in the atomic domain. In
the macroscopic domain, however, thermodynamics is both powerful and useful.
It enables one to draw rather precise and far-reaching conclusions from a few
seemingly commonplace observations. This power comes from the implicit as-
sumption that the equation of state is a regular function, for which the thermody-
namic laws, which appear to be simple and naive at first sight, are in fact
enormously restrictive.
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1.2 THE FIRST LAW OF THERMODYNAMICS

In an arbitrary thermodynamic transformation let AQ denote the net amount of
heat absorbed by the system and AW the net amount of work done by the
system. The first law of thermodynamics states that the quantity AU, defined by

AU = AQ - AW (1.1)
is the same for all transformations leading from a given initial state to a given
final state. ‘

This immediately defines a state function U, called the internal energy. Its
value for any state may be found as follows. Choose an arbitrary fixed state as
reference. Then the internal energy of any state is AQ — AW in any transforma-
tion which leads from the reference state to the state in question. It is defined
only up to an arbitrary additive constant. Empirically U is an extensive quantity.
This follows from the saturation property of molecular forces, namely, that the
energy of a substance is doubled if its mass is doubled. _

The experimental foundation of the first law is Joule’s demonstration of the
equivalence between heat and mechanical energy—the feasiblity of converting
mechanical work completely into heat. The inclusion of heat as a form of energy
leads naturally to the inclusion of heat in the statement of the conservation of
energy. The first law is precisely such a statement.

In an infinitesimal transformation, the first law reduces to the statement that
the differential

dU = dQ — dWw (1.2)

is exact. That is, there exists a function U whose differential is dU; or, the
integral [dU is independent of the path of the integration and depends only on
the limits of integration. This property is obviously not shared by dQ or dW.

Given a differential of the form df = g(A, B) dA + h(A, B) dB, the condi-
tion that df be exact is dg/dB = dh/dA. Let us explore some of the conse-
quences of the exactness of dU. Consider a system whose parameters are PV, T
Any pair of these three parameters may be chosen to be the independent
variables that completely specify the state of the system. The other parameter is
then determined by the equation of state. We may, for example, consider
U= U(P,V). Then* :

f du oy dP + (3U) dav (1.3)
B ( aP ) v v/, '
The requirement that 4U be exact immediately leads to the result
a [fauy )} a4 [aU
aVI\aP [y], PI\OV /ey

The following equations, expressing the heat absorbed by a system during an
infinitesimal reversible transformation (in which dW = PdV), are easily ob-

*The symbol {3U/3P), denotes the partial derivative of U with respect to P, with ¥ held
constant.
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tained by successively choosing as independent variables the pairs (P, V), (P, T),
and (V, T):

U U\
dQ = (ﬁ)vdP+ [(57)P+P]dv (1.5)
e[, o 25,3
U U
dQ:(ﬁ)VdT‘L [(W)T+ P] av 1.7

Called dQ equations, these are of little practical use in their present form,
because the partial derivatives that appear are usvally unknown and inaccessible
to direct measurement. They will be transformed to more useful forms when we
come to the second law of thermodynamics.

It can be immediated deduced from the dQ equations that

on(2),-(2)
ool e

where H = U + PV 1s called the enthalpy of the system.
We consider the following examples of the application of the first law.

(@) Analysis of Joule’s Free-Expansion Experiment. The experiment in ques-
tion concerns the free expansion of an ideal gas into a vacuum. The
initial and final situations are illustrated in Fig. 1.3.

Experimental Finding. T, =T,.
Deductions. AW =0, since the gas performs no work on its external
surrounding. AQ =0, since AT = 0. Therefore, AU =0 by the first law.

Thermometer —s{ | T} Te=Ti|

l

T J i
1
-.:t::% vacuum | § e
: ! ! /
Ltk WS i
Water beta
(U e
Fefore After
oS wesuptes volume V. Gas occupies volume Va > V1.

¥ig. 1.3 e’ frec-expansion experiment.



