Second Edition

Principles of DATABASE
SYSTEMS

JEFFREY D. ULLMAN
Stanford University

|| 4

vy

Second Edition

Principles of DATABASE
SYSTEMS

JEFFREY D. ULLMAN
Stanford University

. 5506694

yia c,
PITMAN PUBLISHING LIMITI:D
128 Long Acre, London WC2E 9AN

Associated Companies
Pitman Publishing New Zealand Ltd, Wellmgton
Pitman Publishing Pty Ltd, Melbourne

First published in Great Britain 1983
First published in USA 1982

© 1982 Computer Science Press, Inc.
11 Taft Ct.
Rockville, Maryland 20550

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording and/or otherwise
without the prior written permission of the publishers.

This book may not be lent, resold, hired out
or otherwise disposed of by way of trade in any form of binding or
cover other than that in which it is published, without prior consent

’ of the publishers. This book is sold subject to the
Standard Conditions of Sale of Net Books and may not be
resold in the UK below the net price.

This book was first published in 1982 by
Computer Science Press, Inc.
11 Taft Ct.
Rockyville, Maryland 20850

1 23 45 6 87 8 85 84 83 82

Cover concept by Jefftéy D. Uliman
Cover artist—Ruth Kagmminger

Lityrary of Congress Cataloging in Publichtid@Pata

Ullman, Jeffrey D., 1942~
Principles of database systems.

(Computer software engineering serles)
Bibliography: p.
Includes index.
1. Data base management. 1. Title. 1I. Title:
Database systems. III. Series.
QA76.9.D3U44 1983 001.64 82-2510
US ISBN 0-914894-36-6, = _ = AACR2
UK ISBN 0-273-08548, ' 4 .3{) ¢ &

PREFACE TO THE FIRST EDITION -

It is evident that a course in database systems now plays a central role in
the undergracuate and graduate programs in computer science. However, un-
like the more traditional and better established systems areas, like compilers
and operating systems, where a good mix of principles and practice was estab-
lished many years ago, the subject matter in database systems has been largely
descriptive. '

This book is developed from notes I used in a course at Princeton that
attempted to bring database systems into the mainstream of computer science.
The course was taught to a mix of seniors and first-year graduate students.
In it, I tried to relate database ideas to concepts from other areas, such as
programming languages, algorithms, and data structures. A substantial amount
of descriptive material was included, since students, being used to conventional
programming languages, may find query languages rather unusual. The data
structures relevant to databases are also somewhat different from the kinds of
structures used in eonventional programming, since the large scale of a database
makes practical many structures that would be only of theoretical interest
otherwise.

However, I added to the mix of topics the relevant theory that is now
available. The principal concepts that have been found useful are concerned
with relations and with concurrency. I have devoted a large portion of the
book to a description of relations, their algebra and calculus, and to the query
languages that have been designed using these concepts. Also included is an
explanation of how the theory of relational databases can be used to design good
systems, and a description of the optimization of queries in relation-based query
languages. A chapter is also devoted to the recently developed protocols for
guararteeing consistency in databases that are operated on by many processes
concurrently.

Exercises

Each chapter inc]udes’exercises to test basic concepts and, in some cases, to
extend the ideas of the chapter. Th= most difficult exercises are marked with
a double star, while problems of intermediate difficulty have a single star.

ii PREFACE

Acknowledgments

I am grateful for the comments and suggestions I received from Al Aho, Brenda
Baker, Peter deJong, Ron Fagin, Vassos Hadzilacos, Zvi Kedem, Hank Korth,
and Joseph Spinden. The initial draft of this manuscript was ably typed by
Gerree Pecht. Her efforts and the support facilities at Princeton University are
appreciated.

J.D.U.

7Ll

Ly —

PREFACE TO THE SECOND EDITION

The appearance of a large number of interesting and important developments
in the database field prodded me to make a substantial revision of the book.
The general direction of changes is towards more prominence for the relational
model and systems based on that model. I have therefore simplified the material
on the hierarchical and network models; however, I brought it up to the front of
the book, so there will be some slight tendency for that material to be covered
in a course of limited scope, as it should be. The other major changes to the
book are the following,.

1. The material on optimization has been expanded, by including a discussion
of the System R approach to optimization, tableau-based methods, and
optimization in the distributed environment.

2. There is a discussion of universal relation systems, which are relational
database systems that support a user view thLat looks like a single relation.

3. Concurrency control by “optimistic,” or timestamp-based methods has
been introduced.

4. Distributed systems are covered, both for optimization issues and concur-
rency control. .)

5. A discussion of data structures for range queries appears.

6. There is an introduction to generalized dependencies and their inference.

Mapping the Old Edition to the New’

Those familiar with the first edition will notice that some material has been
moved around. A brief guide for finding the transplanted material follows.

Material from the old Chapters 1 and 2 is still there, along with some
additional material. The old Chapter 3 has been split up. Introductory material
from there now appears in Chapter 1, while some material on the network
model (Section 3.2) has been combined with the old Chapter 7 to form the new
Chapter 3. Section 3.3 on the hierarchical model has been combined with some
of the material from the old Chapter 8 to form the new Chapter 4. Some of
the IMS-specific material from Chapter 8 has been removed.

Chapter 4, on the relational model, has been divided into Chapters 5
and 6. Chapter 5 now contains relational algebra and calculus, and all the
material on physical organization for relational systems. The query langauges
themselves are described in Chapter 6. The old Section 3.4, comparing the

5506694

iv PREFACE

various models, now appears in Chapter 5. The old chapters 5, 6, ?, and 10
have been renumbered 7, 8, 10, and 11, and some new material added.

About the Cover

It's a “data baste,” get it? No? Uh, well, the chef has this bulb baster, see, and
--, aw, forget it.

More Acknowledgements

The following people made comments on the first edition or made suggestions
that were helpful in the preparation of the second edition: Dan Blosser, Martin
Brooks, Mary Feay, Shel Finkelstein, Kevin Karplus, Arthur Keller, Keith
Lantz, Dave Maier, Dan Newman, Mohammed Olumi, Shuky Sagiv, Charles
Shub, and Joe Skudlarek. Their thoughts are much appreciated.

The second edition was prepared using Don Knuth's TEX typesetting
system. I would also like to thank Luis Trabb-Pardo for invaluable assistance
debugging my attempts to use the system.

J.D.U.

#0d00¢

[y
u

TABLE OF CONTENTS

Chapter 1: Introduction to Database System Concepts
1.1: An Overview of a Database System 1
1.2: Basic Database System Terminology 5
1.3: A Model of the Real World 11
1.4: Data Models 18
Exercises 32
Bibliographic Notes =~ 34

Chapter 2: Physical Data Organization 36
2.1: A Model for External Storage Organization 36
2.2: Hashed Files 40
2.3: Indexed Files 46
2.4: B-trees 58
2.5: Files with a Dense Index 65
2.6: Files with Variable Length Records 69

2.7: Data Structures for Lookup on Nonkey Fields 75

2.8: Partial Match Retrieval 78 ,
2.9: Data Structures for Range Queries 85
Exercises 90
Bibliographic Notes 93

Chapter 3: The Network Model and the DBTG Proposal .

3.1: The DBTG Data Definition Language 94
3.2: Implementation of Networks 102
3.3: The Program Environment 106
3.4: Navigation Within the Database 108
- 3.5: Insertion, Deletion, and Modification 115
Exercises 120]
Bibliographic Notes 121

Chapter 4: The Hierarchical Model 122
4.1: From Networks to Hierarchies ~ 122
4.2: Implementation of Hierarchical Databases 129

4.3: A Hierarchical Data Manipulation Language 136

94

vi TABLE OF CONTENTS

Exercises 142
Bibliographic Notes 144

Chapter 5: The Relational Model 145
5.1: Storage Organization for Relations 145
5.2: Relational Algeb-a 151
5.3: Relational Calculus 156
5.4: Comparison of the Models 168
Exercises 170
Bibliographic Notes 172

Chapter 6: Relational Query Languages 174
6.1: General Comments Regarding Query Languages 174
6.2: ISBL: A “Pure” Relational Calculus Language 177
6.3: SQUARE and SEQUEL 181
6.4: QUEL: A Tuple Relational Calculus Language 190
6.5: Query-by-Example: A Domain Calculus Language 197
Exercises 209
Bibliographic Notes 210

Chapter 7: Design Theory for Relational Databases 211
7.1: What Constitutes a Bad Database Design? 211
7.2: Functional Dependencies 213 '
7.3: Decomposition of Relation Schemes 225
7.4: Normal Forms for Relation Schemes 234
7.5: Multivalued Dependencies 243
7.6: Other Kinds of Dependencies 253
Exercises 262
Bibliographic Notes 264

Chapter 8: Query Optimization 268 -
8.1: Basic Optimization Strategies 268
8.2: Algebraic Manipulation 274 ‘
8.3: Optimization of Selections in System R 283
8.4: The QUEL Decomposition Algorithm 288
8.5: Exact Optimization for a Subset of Relational Queries 296
8.6: Optimization Under Weak Equivalence 309
Exercises 313
Bibliographic Notes 315

Chapter 9: The Universal Relation as a User Interface 317
9.1: The Universal Relation Concept 317
9.2: A Simple Query Interpretation Algorithm 326

TABLE OF CONTENTS ' vii

9.3: Cyclic and Acyclic Database Structures 332

9.4: Maximal Objects and Queries about Cyclic Databases 338
Exercises 345
Bibliographic Notes 346

Chapter 10: Protecting the Database Against Misuse 349

10.1: Integrity 350
10.2: Integrity Constraints in Query-by-Example 351
10.3: Security 355 '
10.4: Security in Query-by-Example 357
10.5: Security in Statistical Databases 359
Exercises 365
Bibliographic Notes 367

Chapter 11: Concurrent Operations on the Database 369

11.1: Basic Concepts 370
11.2: A Simple Transaction Model 376
11.3: A Model with Read- and Write-Locks 381
11.4: A Read-Only, Write-Only Model 385
11.5: Concurrency for Hierarchially Structured Items =~ 391
11.6: Protecting Against Crashes- 395
11.7: Optimistic Concurrency Control 400
Exercises 405
Bibliographic Notes 407

Chapter 12: Distributed Database Systems 409

12.1: Fragments of Relations 410
12.2: Optimizing Transmission Cost by Semijoins 416
12.3: The System R* Optimization Algorithm 424
12.4: Distributed Concurrency Control 431
12.5: The Optimistic Approach 439
12.6: Management of Deadlocks and Crashes 443
Exercises 447
Bibliographic Notes 449

Bibliography 451

Index

474

1

INTRODUCTION TO DATABASE
SYSTEM CONCEPTS

In this chapter we consider the principal functions of a database management
system. We introduce basic concepts such as the different levels of abstraction
present in such a system and the kinds of languages used to deal with thesystem.
We then discuss a “real world” model against which to measure the capability of
database systems to represent and manipulate realistic data. This model, called
the “entity-relationship” model, is discussed in Section 1.3. Then, we briefly
introduce three “data models,” the relational, network, and hierarchical models.
These are abstractions of the real world similar to the entity-felatienship model,
but they are more closely tuned to the needs of database system designers to
deal with efficiency issues than the entity-relationship model is. Thus, it is
the latter three models, rather than the entxtv-relatlonshlp model, that most
frequently are used in database systems.

1.1 AN OVERVIEW OF A DATABASE SYSTEM

Let us consider an enterprise, such as an airline, that has a large amount of
data kept for long periods of time in a computer. This data might include infor-
mation about passengers, flights, aircraft, and personnel, for example. Typical
relationships that might be represented include bookings {which passengers have
seats on which flights?) flight crews (who is to be the pilot, copilot, etc., on
which flights?), and service records (when and by whom was each aircraft last
serviced?).

Data, such as the above, that is stored more-or-less permanently in a
computer we term a database. The software that allows one or many persons
to use and/or modify this data is a database management system (DBMS). A
major role of the DBMS is to allow the user to deal with the data in abstract
terms, rather than as the computer stores the data. In this sense, the DBMS
acts as an interpreter for a high-level programming language, ideally allowing
the user to specify what must be done, with little or no attention on the user’s
part to the detailed algorithms or data representation used by the system.

2 INTRODUCTION TO DATABASE SYSTEM CONCEPTS

However, in the case of a DBMS, there may be far less relationship between
the data as seen by the user and as stored in the computer, than between, say,
arrays as defined in a typical programming language and the representation of
those arrays in memory.

The database management system is one of the most complex varieties of
software in existence. One way to get a feel for the different aspects of a DBMS
is to considcr the various kinds of users of such a system and the ways they
interact with the system and with each other. ’

The Programmer/User and His Interaction with the System

Thinking again in terms of the airline database, the assistant operations man-
ager has had some training as a programmer, and if he wants to find out what
planes are being repaired and where they are located, he might formulate his
query in a query language or data manipulation language (DML), and it might
come out something like

PRINT Plane, Location
WHERE Status==“broken”

Figure 1.1 shows what happens to such a query; it is represented by the
query @;. First it is handled by a query processor, which is like a compiler for
the query, although the output of this “compiler” is not machine language but
rather a sequence of commands that are passed to other parts of the database
management system. The query processor needs to know about the structure
of the database, and we have shown it in Fig. 1.1 accessing information called
the “database description.” This information is needed so terms like “Plane”
or “Status” can be interpreted in the context of the particular database system.
Optimization of the query may also be attempted at this stage, since the speed
with which the query can be answered may depend on the choices made by
the query processor as to the sequence of steps to be taken by the system. We
discuss optimization of queries in Chapter 8.

Many database systems are “ad hoe,” in the sense that the software repre-
sented by the rectangles in Fig. 1.1 are written for the purpose of the database
at hand only. In that case, the information about the database may be built
into the query processor itself. Other database systems are built from com-
mercial products; the various pieces of software shown in Fig. 1.1 are supplied
by a vendor who has written them to deal with any, or almost any, database
his customers may want. In that case, the tables referred to as a database
description are essential, since the general-purpose query processor can have no
built-in knowledge of the particular database. The description of the database
is written in a specialized language called a data definition language or DDL,
and is compiled into tables that are used by the rest of the DBMS.

The processed query is passed to a collection of routines that we shall term

1.1 AN OVERVIEW OF A DATABASE SYSTEM 3

less
frequent frequent rare

application user database
‘program query scheme
query Q2 &
query DDL
Processor compiler

compiled database
query Q2 description

file
mans

er

‘physical
database

Fig. 1.1. Schematic diagra._m of a database system.

the database manager. One role of the database manager is to translate the
query into terms that the file manager can understand, that is, into operations
on files, rather than on the more abstract data structures of the database
description. The file manager may be the general-purpose file system provided
by the underlying operating system, or it may be a specialized file system that
knows about the particular ways in which the data of the database is stored.

The translation of the query into operations on files may be less than trivial,

since the database could be représented by complex file structures such as are

discussed in Chapter 2; the purpose of these structures is to make access and
manipulation of the database as rapid as possible.

The database manager is frequently given several other tasks to perform,
such as the following.

1. Security. Not every user should have access to all the data. For example,
if personnel records are kept, only key personnel with the right and need
to know salaries should be able to access this data. The user has presum-
ably identified himself by password to the database manager, and it knows,
perhaps from tables included with the database description, that this per-
son is entitled to access data about salaries. We shall discuss the security

4 INTRODUCTION TO DATABASE SYSTEM CONCEPTS

aspect of a DBMS in Chapter 10.

2. Integrity. Certain kinds of consistency constraints, (i.e., required properties
of the data) can be checked by the DBMS, if it is told to do so. It is useful
to have such checks made whenever a user gives a command in the data
manipulation language to insert, delete, or change some data. Easiest to
check are properties of values, such as the requirement that the number of
passengers booked on a flight does not exceed the capacity of the aircraft.
Somewhat harder to check are structural requirements involving equalities
and inequalities of values, without reference to the values themselves (e.g.,
two aircraft may not be assigned to the same flight). Chapter 7 covers some
aspects of structural integrity; Chapter 10 discusses integrity in general.

3. Synchronization. Often many users are running programs that access the
database at the same time. The DBMS should provide protection against
inconsistencies that result from two approximately simultaneous operations
on a data item. For example, suppose that at about the same time, two
reservation clerks issue requests to reserve a seat on flight 999. Each request
results in the execution of a program that might examine the number of
seats available (say one seat is left), subtracts one, and stores the resulting
number of seats in the database. If the DBMS does not sequence these two
transactions (the two invocations of the reservation program) properly, two
passengers might wind up sitting in the same seat. We shall investigate
measures for assuring proper synchronization in Chapter 11. Chapter 12
covers some of the more complex problems that occur when the database
is not only accessed concurrently by several processes, but the processes
and data may be distributed over several machines in widely separated
locations. ’ .

The Naive User

While the assistant operations manager may have some programming ability,
his boss, the operations manager may choose not to develop such a capability.
He would rather type a single command like

RUN REPAIRS

and have the information printed out for him.

Similarly, the reservations clerk will sit at a terminal and type a command
such as BOOK. The program invoked would engage in a dialog with the clerk,
asking him for information in a fixed order, e.g. “enter name of passenger,” and
“enter desired flight number.” Obtaining the requisite information from the
clerk, the program interrogates the database to determine if space is available
and, if so, modifies the database to reflect the reservation; if not, the program
so informs the clerk.

1.1 AN OVERVIEW OF A DATABASE SYSTEM 5

The Applications Programmer

Programs such as REPAIRS or BOOK that are stored permanently and are
available to users are called applications programs. Their creation is the respon-
sibility of the applications programmer, a professional who writes and maintains
programs written in the data manipulation language. The path taken by such
a program is shown in Fig. 1.1 as the query Q3 This program is written once,
or perhaps a few times as needs change. It is eempiled by the query processor
and stored in the file system. The stored, compiled version can be invoked
by commands, and it need not go through the compilation and optimization
processes again (unless the database description has changed since the last time
it was used).

The Database Administrator

We have shown in Fig. 1.1 a path labeled “rare” in which the database descrip-
tion itself is changed. That is, the data definition language program that
describes the database is modified and recompiled into a new description that
replaces the old. This operation is indeed an infrequent but important one, and
a high-level person, generally called a database administrator, is granted respon-
sibility for matters that deal with the database as a whole, while individual
queries and manipulations of the database are handled by the applications pro-
grammers and users. Some of the responsibilities of the database administrator
or his staff are the following.
1. The creation of the original description of the database structure and the
way that structure is reflected by the files of the physical database.
2. The granting to the various users of authorization to access the database
or parts of it. :

. 3. Modification of the database description or its relationship to the physi-
cal organization of the database, should experience indicate that another
organization would prove more efficient.

4. Making backup copies of the database and repairing damage to the database
due to hardware or software failures or misuse.

1.2 BASIC DATABASE SYSTEM TERMINOLOGY

In this section we shall elaborate upon the concepts introduced in the previous
section and develop them more precisely. There are several kinds of distinctions
we must make when talking about a database system. We shall begin by -
discussing three levels of abstraction used in describing databases. We shall
also emphasize the scheme/instance dichotomy, that is, the distinction between
plans for a thing and the thing itself. Finally, we shall discuss the two different
kinds of languages used in a database system, those for data definition and
those for data manipulation. ’

6 INTRODUCTION TO DATABASE SYSTEM CONCEPTS
user group 1 view 1

user group 2 view 2 conceptual physical

database database

user group n

[\ J \\ J
T T
definition and definition and implemented
mapping written mapping written on physical
in subscheme in data defini- devices
data definition tion language
language

Fig. 1.2. Levels of abstraction in a database system.
Levels of Abstraction in a DBMS -

It should be obvious that between the computer, dealing with bits, and the
ultimate user dealing with abstractions such as flights or assignment of per-
sonnel to aircraft, there will be many levels of abatraction. A fairly standard
viewpoint regarding levels of abstraction is shown in Fig. 1.2. There we see a
single database, which may be one of many databases using the same DBMS
software, at three different levels of abstraction. It should be emphasized that
only the physical database actually exists.

The physical database resides permanently on secondary storage devices,
such as disks and tapes. We may view the physical database itself at several
levels of abstraction, ranging from that of records and files in a programming
language such as Pascal, through the level of logical records, as supported by the
operating system underlying the DBMS, down to the level of bits and physical
addresses on storage devices. In this book we shall concentrate on the level
of files and simple data structures. Chapter 2 will discuss the principal data
structures used to implement a physical database, while Chapters 3, 4, and
5 point out the special data structures suitable for certain kinds of database
systems.

The conceptual database is an abstraction of the real world pertinent to an
enterprise. It is roughly at the level of passengers, flights, and so on, which we
_ have discussed in connection with the enterprise of an airline. A DBMS provides
a data definition language to specify the conceptual scheme and, most likely,
some of the details regarding the implementation of the conceptual scheme by
the physical scheme. The data definition language is a high-level language,
enabling one to describe the conceptual database in terms of a “data model.”
An example of a suitable data model is the directed graph (the network model

1.2 BASIC DATABASE SYSTEM TERMINOLOGY 7

in the jargon), where nodes represent sets of similar entities (e.g., all passengers,
or all flights) and arecs represent associations (e.g., the assignment of aircraft to
flights). Section 1.4 discusses the three major data models, network, relational,
and hierarchieal, in overview, while Chapters 3-5 discuss them in detail.

A view or subscheme is an abstract model of a portion of the conceptual
database. Many, but not all, database management systems provide a facility
for declaring views, called a subscheme data definition language and a facility
for expressing queries and operations on the views, which would be called a
subscheme data manipulation language.

As an example of the utility of views, an airline may provide a computerized
reservation service, consisting of data and a collection of programs that deal
with flights and passengers. These programs, and the people who use them, do
not need to know about personnel files or the assignment of pilots to flights.
The dispatcher may need to know about flights, aircraft, and aspects of the
personnel files (e.g., which pilots are qualified to fly a 747), but does not need
to know about personnel salaries or the passengers booked on a flight. Thus,
there may be one view of the database for the reservations department and
another for the dispatcher’s office.

In a sense, a view is just a small conceptual database, and it is at the same
level of abstraction as the conceptual database. However, there are senses in
which a view can be “more abstract” than a conceptual database, as the data
dealt with by a view may be constructable from the conceptual database but
not actually present in that database.

For a canonical example, the personnel department may have a view that
includes each employee’s age. However, it is unlikely that ages would be found
in the conceptual database, as ages would have to be changed each day for
some of the employees. Rather, it is more likely that the conceptual database
would include the employee’s date of> birth. When a user program, which
believed it was dealing with a view that held age information, requested from the
database a value for an employee’s age, the DBMS would translate this request
into “current date minus date of birth,” which makes sense to the conceptual
database, and the calculation would be performed on the corresponding data
taken from the physical database.

Example 1.1: Let us illustrate the difference between physical, conceptual, and
view levels of abstraction by an analogy from the programming languages world.
In particular, we shall talk about arrays. On the conceptual level, we might use
an ordinary declaration such as

integer array A[l..n;1.m]

while on the physical level we might see the array A as stored in a block of
consecutive storage locations, with Alz, j] in location ag + 4(m(z — 1) + 7 —1).
A view of the array A might be formed by declaring a function f(¢) to be the

