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Preface

In recent years network optimization has become an important field in
operational research. It includes such areas as shortest paths, network
flows, traffic equilibrium, Chinese postman and travelling salesman prob-
lems, vehicle routing and location on a network, as well as design of an
optimal network. Since the work of Ford and Fulkerson in 1962 on flows
in networks, this field has been rapidly expanding, as, for example; the
bibliography of Golden and Magnanti (1977) demonstrates. Perhaps one
reason for the great interest in network optimization is its broad applica-
bility to problems in private enterprise as well as to those in public
systems. Telephone networks, rail and road networks, water and waste-
water canal systems, and -airfline networks—all have to be regularly
adapted or expanded to meet changing demands,.and this leads to
decision probiems that can be supported by network optlmlzatlon Espe-
cially promising are network models in transportatxon systems, urban and
regional planning, and civil engmeenng, and from these areas models
have been chosen for presentation in this book.

As in many fields of operational research, the theory of network
optimization is better developed and better represented in the literature
-than the applications. Therefore this book is orientated towards practical
application of network optimization, and is an attempt to present applica-
tions which are general enough to be of broader use. A solution algorithm
is presented for each problem, enabling the reader to imiplement the
-algorithm and solve his probiem. A book like this obviously cannot cover
all applications of network optimization, and it reflects, rather, the au-
thor’s own experience and interests.

In Chapter 2 network flow problems are discussed. After introducing
shortest path and maximum flow algorithms, the traffic assignment prob-
lem is presented. Two mcdels, one with flow-dependent the other with
flow-independent travel time, are discussed. For both, the differences
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hetween descriptive and normative traffic assignment are shown and
solution methods described. ‘

Chapter 3 deals with the design of an optimal network and location
problems on a network. Algorithms are presented for the following
problems: optimal expansion of a waste-water canal system; an optimal
waste-water canal system and optimal filter plant location to minimize
construction and operating costs; optimal location of emergency service
facilities to minimize the number of locations for a given service level in
terms of the response time; an optimal network of an offshore natural-gas
pipeline system to minimize construction and operating costs; optimal
expansion of a road and rail network, under investment constraints, to
maximize reduction of transportation time; and the optimal design of a
network for air transportation.

In Chapter 4 the sequential construction of a waste-water canal system
is- analysed, with the objective of minimizing the amount of uncleaned
waste water during the construction period of the total canal network.
This problem turns out to be a special scheduling problem under prece--
dence constraints.

Chapter 5 is concerned with some vehicle routmg problems. Starting
with street cleaning routes, the Chinese postman problem is presented
and an algorithm for limited route lengths is discussed. Waste collection is
the second topic in this chapter, including the presentation of the travel-
ling salesman problem. An heuristic solution procedure is then discussed
for school bus routing, the object being to minimize the number of buses
necessary.

Finally, all of Chapter 6 deals with the problem of computing optimal
routes of buses (or trams) in an urban public transportation network. For
a given number of buses the routes are chosen in such a way as to
minimize the sum of transportation times of all passengers, thus improv-
ing the service of the system. .

Most of the algorithms explained in this book were implemented by the
author in a FORTRAN version. This Interactive Network Optimization
System (IANOS) was written to supply the user with an easy-to-handle
computer program in an interactive mode for modest-sized problems.
This program package is available from the author (see Mandl, 1979).

Earlier versions of the manuscript have been used as a text for a-
graduate course at the Department of Industrial Engineering at Univer-
sidade Catolica in Rio de Janeiro, and also at the Department of
Operational Research at the Institute of Technology in Vienna. The many
constructive criticisms from students attending these courses have helped
to form the text, and for this help the author would like to express his
thanks.
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In preparing this book I have benefited from many people. Especially, I
would like to thank my colleagues Andrés Polyméris and Hans-Jakob
Liithi, members of the Department of Operational Research at the ETH
Ziirich, with whom I started to explore new areas of application of
operational research in public systems, as well as Professor Franz Wein-
berg, director of the Department, who first mtroduced me - to the pos-
sibilities of operational research.

I am also grateful to Klaus Plasser, Department of Computer Science at
the Institute for Advanced Studies, Vienna, for his great help when
implementing and testing the computer programs. For typing the manus-
cript I am indebted to the patlcnce of Mrs Irene Krizsanits. Finally, 1
would like to express my thanks to Arthur Bourne, Academic Press, for
his fruitful suggestions for improving the manuscript.

September, 1979 Christoph Mandl
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Chapter 1

Networks

Quite a number of systems may be viewed as and are called networks,
although their physical appearance is quite different in nature. Most of
these Systems are results of human civilization and are of great impor-
tance for its functioning. In particular, transportation networks, like road,
rail and airline networks, canal networks for transporting water, waste
water, oil and natural gas, and communication networks of telephones
and computers will be discussed here. However, even natural systems
such as caves and rivers can be viewed as networks.
~ To see the common structure behind these different systems, they must
be ,abstracted from their physical appearance. Then théir underlying
structure may be seen as a collection of points, which might be road
crossings, railway stations, airports, pumping stations and so on, and a
collection of lines, which might be roadss canals, telephone cables, etc.
connecting all or some of the points. In short we denote a network N by
N=(X, A), where X is the set of points, usually called nodes or vertices,
and A is the set of lines, called arcs or links. In this abstract formulation
of a network, the differences between networks are not in their physical
appearance but in their structure, which is described by the sets X and A,
and by denoting the nodes of X which are directly connected by some arc
of A. In many practical situations the connections between two nodes are
directed, in the sense that although node a may be connected with node
b, the reverse need not bq true. Networks of this type are called directed
networks and the associated arcs are known as directed arcs. Examples of
such arcs are one-way streets, where cars may only drive in one direction,
and also canals or rivers, where water can only fiow from higher to lower
points. A non-directed network may easily be transformed into a directed
. t
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(a)
Fig. 1.1. (a) Non-directed network; (b) directed network.

network. Instead of one non-directed arc one only has to define two
directed arcs, connecting two vertices in different directions, as can be
seen in Fig. 1.1. In this book we will, for simplicity, call a directed
network simply a network.

Before giving some necessary definitions, we have to discuss how to
describe fully the structure of a network in a convenient form. There are
two common ways for doing so, both of which give a matrix formulation
of a network structure. The more compact form is the adjacency matrix.
The elements a,; of this matrix are defined as

_ {l if there is an arc from node i to j
=
0 if no arc from node i to j exists.

The other notation is the incidence matrix, where the elements b; of this
matrix are deﬁned as

—1 if arc j starts at vertex i
b, =4 0 if arc j neither starts nor ends at vertex i
—1 i arc j ends at vertex i.

Because a network normally consists of more arcs than nodes, the
incidence matrix usually contains more columns than the adjacency
matrix for the same network. In Fig. 1.2 an example of the graphical and
the matrix representation of a network is given.

{Of course, for large networks, both matrix representations require
much data storage in a computer. Therefore, only the non-zero elements
of these matrices, which include all the information, are stored.
. In all the problems presented in this book, some value ¢, will be

associated with an arc je A. These values can denote the length of the
arc, the construction cost, the capacity, the amount of cars (water, oil)
passing through the arc per hour, etc. The ¢; values can either be stored
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Fig. 1.2. (a) Graphical representation of a network; (b) adjacency matrix; (c) incidence
matrix.

for each arc when using the incidence matrix notation, or an extended
adjacency matrix can be defined, with the following elements d;;:

4 ' {c, if arc | connects node i with node J
"z it no arc¢ between node i and j exists.

The value Z must then be some number # ¢, for all arcs [ € A: Usually Z
. is chosen to be ‘either negative or very large.
A path or route in a network is any sequence of arcs where the final
node of one arc is the initial node of the next. Thus in Fig. 1.2a the-
sequences of arcs '
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are all Toutes. A path is called a circuit, if the initial and the final node of
this path are identical. If costs are associated with the arcs of a network,
then the cost of a route or a circuit is the sum of the costs of all arcs
belonging to this route. Thus, if a path consists of the set of arcs P the
cost I(P) of the path is defined as

1P)=Y ¢
jeP
where ¢; denotes the cost of arc j.

If not all arcs of a given network N =(X, A) are relevant, some of them
may be ignored by building a partial network N, =(X, A,), with A, cA.
If not all nodes of a given network N =(X, A) are of interest one can
construct a subnetwork Ng=(Xg, Ag) of N, where X< X and Ajc A
excludes all arcs the initial and final node of which is not a member of X.

If a network shows a railway system, with the nodes being railway
stations and the arcs the rails, then the network representing only the
main connections is a partial network, the network which represents only
the railway system of a special region is a subnetwork, and the network
which represents the main connections of the spemal region is a partial
subnetwork (Fig. 1.3).

Some network structures are of particular interest, three of which are
discussed below.

If all pairs of nodes are directly connected by an arc, the network is
called complete. A good example of this is an airline network. If the
nodes denote airports and the arcs denote direct flight connections

(c) , (d)
Fig. 1.3. (a) Network; (b) partial network; (c) subnetwork; (d) partial subnetwork.
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, between two airports, then the network of all possible direct flight
connections within a certain region is usually a complete network.

A network N =(X, A) is said to be bipartite if the set of its nodes can
be partitioned into two subsets Y and Z, such that all arcs have the initial
or terminal vertex in Y and the other in Z.

The opposite to a complete network is the tree network or tree. While
a complete network contains as many arcs as possible, without having any
arc more than once, a tree contains as few arcs as possible such that every
node is the initial or terminal vertex of at least one arc. To be more
precise, a tree is a network which contains no circuit, but in which there is
exactly one path from every node to one particular node. Of all
network structures with a given set'of nodes X, a tree has the advantage
of requiring the minimum number of arcs to connect all nodes with one
particular node. This is the reason why canal systems for water or waste
water tend to be tree networks, since the construction cost for trees is
lower than for arbitrary networks. Also, topographical constraints can
lead to tree structures, as, for example, with rivers.

Fig. 1.4 shows examples of all the three types of network structure.

In a general network, it might well happen that it is not possible to find
a path between two nodes. Such a network is called non-connected; for
example, a tree is a non-connected network. Conversely, a netwe.k in
which a path exists between any pair of nodes is called connected.
Obviously, road networks, rail networks and communication networks
should be connected. Another example of a non-connected network is
that shown in Fig. 1.2, where there is no path to node b. Of course, a
complete network is always connected.

Finally, a vertex i is said to be adjacent to a.vertex j if an arc exists
with its initial vertex being i or j and its terminal vertex being j or i

Now, many network optimization problems can be formulated in linear
integer optimization .form. Therefore, network problems are strongly
connected with integer programming. As is well known, .such problems

(a} . {(b) i ' (c)
Fig. 1.4. (a) Complete network; (b) bipartite network; (c) tree.
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tend to be difficult compared to say linear programming. Karp (1975)
analysed in detail the difficulty or computational complexity of com-
binatorial problems. He claims that in general such problems can. be
divided into two classes. In the first class are those problems which can be
solved in polynomial time. This means that if a network has n vertices,
the computational time to solve the problem defined on this network is in
the worst case growing with O(n*), where k is some fixed integer number
1,2, ... depending on the problem. Such problems, which are quite easy,
are said to belong to the P-class and include shortest paths and some
network-flow problems.

In the second class, the so-called NP-class, are those problems which
today can only be solved in exponential time, i.e. the computational time
is in the worst case growing with O(k"), where n is the number of vertices
in the network and k is some fixed integer. Clearly, the solution of
NP-problems causes a lot of trouble, but, as we shall sec in this book,
many practical problems like general integer programming, “travelling
salesmen” routes, setcovering and others are of the NP-type.

Thus, for large and difficult problems, approximation techniques and
especially heuristic algorithms are of great importance and often run with
great success, aithough the reason for this is still unknown; as Karp
(1975) believes: “The ultimate explanation of ‘this phenomenon wﬂl
undoubtedly have to be probabilistic”.

Besides the above-mentioned approaches, branch-and-bound methods
and dynamic programming should also be recognized as useful tools for
solving combinatorial problems.



Chapter 2
Network Flows

In this chapter problems arising within a given network in which there are
flows from vertex to vertex will be discussed. Such flows may be cars
within a road network, where the roads are represented by the arcs and
the vertices represent cities. The same model applies to public transporta-
tion systems, like those of railways and buses, and one can also think of
flows in connection with a waste-water canal system or an oil pipeline
system. - ,

The easiest problem in this context is the computation of shortest
distances and paths between two nodes of a network. With the mathemat-
ical formulation of such problems we will introduce the special
constraints of network flow problems, the conservation equations. We
then discuss how to find the maximum flow between two nodes, when the
flow on each arc is restricted. The background of this problem will be the
search for bottlenecks in an urban waste-water canal system. Finally, the
traffic assignment or traffic equilibrium problem, which consists of finding
the flow on each arc within a road network, will be presented. Two
models will be discussed: firstly, when arc costs are independent of the arc
flow; in the more realistic model, however, the arc costs will increase with
increasing flow, thus modelling the common experience that travel time
by car ‘increases when traffic density is high. :

3

2.1. Shortest Paths

Anyone who wishes to travel from his preseit location to any other point,
either by foot, car, train, aeroplane or some other mode of transportation,
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is solving his personal shortest path problem. Although the objectives will
be quite differerit, the type of problem will be the same. Business men
will, according to the rule that time is money, try to minimize transporta-
tion time, students might prefer to find the cheapest route, car drivers
who want to save petrol might choose the shortest path, while passengers
on trains with lots of luggage would perhaps prefer a route with the
minimum number of changes of trains, All these problems can be
formulated as finding the shortest path in-a network. The only differences
will be the meaning of the cost of an arc. For the first-mentioned
objective the cost will be travel time, for the second it will be the price of
a ticket, and for the car driver the cost will be denoted by the length of a.
road. s :
Although by experience most people solve their problem quite well and
therefore will not need any support by a computer, shortest path prob-
lems are important for planning and analysing networks, as will be seen
later in the book. In this section we will first discuss the problem of
finding the shortest distances and routes from one hode to one or all
other nodes. To gain some insight into the mathematical structure of the
problem, we will first formulate it as a linear optimization model and then
present an efficient solution procedure. For the more general problem of
finding the shortest distances and routes between all pairs of nodes of a
network, another algorithm will be presented. '

Assume a network N = (X, A), where the cost of an arc je A is called
¢;. If we want to find the shortest distance and route from node s € X to
node te X this can be formulated as a linear optimization model as
follows: let x; be a variable which is one if a person travelling from s to ¢
uses arc j, and is otherwise zero. Then .

minimize Z;‘ Ci%; (2.1)
subject to ) B
. 1 for k=seX
) X— Y x;=1{ 0 forallother keX (2.2)
pim a1 o kerex
x>0 foralljeA. 2.3)

One convenient property of (2.1-2.3) is that their solution will be
integer without explicitly stating an integrality condition. Equatiqns (2.2)
are called conservation equations and simply state that if a person enters
a node he must also leave the node, unless this node is his origin or
destination. ’ - o , ‘

One should notice that with the help of the incidence matrix eqns (2.2)
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may be written as
Bx=e ' ©2.4)

where B denotes the incidence matrix,r x the flow vector and e the
right-hand side vector of eqn (2.2). It is the special structure -of the
incidence matrix B that guarantees the integrality of the optimal flow
vector Xx.

If not only the shortest path between nodes s and ¢ is wanted, but also
"those between s and all other nodes in X, then eqn (2.4) should be
amended to

Bx = {(n 1) forseX ) 2.5)
-1 forall ke X and k#s

where n is the number of nodes in the set X.

Obviously, both problems (2.1)+2.3) and (2.1), (2.5) and (2.3) may be
solved with the simplex algorithm; however, due to the special structure
of the incidence matrix faster algorithms are available. The one presented
here was developed by Dijkstra. For this algorithm it must be assumed
that the costs ¢;=0 for all arcs je A. However, for problems we are
considering this is not a restrictive assumption, because negative costs do
not have a practical meaning. The algorithm is divided into two parts:
firstly the shortest distances are found and, secondly, the assocnated
shortest paths.

Algorithm D (Dijkstra’s algorithm for shortest distances)

To each vertex x€ X a value v(x) is assigned, which at the end will
denote the shortest distance from some node s € X. This value v(x) may
be temporary or permanent, where temporary means that v(x) could still
be reduced, and permanent indicates that thls value already denotes the
shortest distance.

D1 [Initialization]. Set v(s) « 0 and mark thns value as permanent. Set
v(x} <o for all xe X and x#s and mark these values as temporary.
Set p «s. :

D2 [Updating the values]. For all nodes x which have temporary values
v(x) and which are connected by an arc from p, set v(x) <
min{v(x), v(p)+c] where ¢; is the cost of the arc j from node p to
node x.

D3 [Fixing a value as permanent]. Of all nodes x with associated tempor-
ary values find node y for which.v(y) = min v(x). Mark the value v(y)
as permanent and set p«y.



